삼각법 예제

Résoudre pour ? tan(x) = square root of 2sin(x)
단계 1
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
의 각 항을 로 나눕니다.
단계 1.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1.1
공약수로 약분합니다.
단계 1.2.1.2
수식을 다시 씁니다.
단계 1.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
분수를 나눕니다.
단계 1.3.2
를 사인과 코사인을 사용하여 다시 표현합니다.
단계 1.3.3
로 나누기 위해 분수의 역수를 곱합니다.
단계 1.3.4
를 분모가 인 분수로 표현합니다.
단계 1.3.5
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.5.1
공약수로 약분합니다.
단계 1.3.5.2
수식을 다시 씁니다.
단계 1.3.6
로 나눕니다.
단계 2
로 방정식을 다시 씁니다.
단계 3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
의 각 항을 로 나눕니다.
단계 3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1
공약수로 약분합니다.
단계 3.2.1.2
로 나눕니다.
단계 3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
을 곱합니다.
단계 3.3.2
분모를 결합하고 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1
을 곱합니다.
단계 3.3.2.2
승 합니다.
단계 3.3.2.3
승 합니다.
단계 3.3.2.4
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.3.2.5
에 더합니다.
단계 3.3.2.6
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.6.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 3.3.2.6.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 3.3.2.6.3
을 묶습니다.
단계 3.3.2.6.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.6.4.1
공약수로 약분합니다.
단계 3.3.2.6.4.2
수식을 다시 씁니다.
단계 3.3.2.6.5
지수값을 계산합니다.
단계 4
코사인 안의 를 꺼내기 위해 방정식 양변에 코사인의 역을 취합니다.
단계 5
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
의 정확한 값은 입니다.
단계 6
코사인 함수는 제1사분면과 제4사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제4사분면에 있는 해를 구합니다.
단계 7
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 7.2
분수를 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.2.1
을 묶습니다.
단계 7.2.2
공통분모를 가진 분자끼리 묶습니다.
단계 7.3
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.3.1
을 곱합니다.
단계 7.3.2
에서 을 뺍니다.
단계 8
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 8.2
주기 공식에서 을 대입합니다.
단계 8.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 8.4
로 나눕니다.
단계 9
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해