문제를 입력하십시오...
삼각법 예제
단계 1
변수를 서로 바꿉니다.
단계 2
단계 2.1
로 방정식을 다시 씁니다.
단계 2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
단계 2.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 2.3.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 2.3.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 2.3.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 2.4
각 식에 대하여 를 구합니다.
단계 2.5
의 에 대해 풉니다.
단계 2.5.1
시컨트 안의 를 꺼내기 위해 방정식 양변에 시컨트의 역을 취합니다.
단계 2.6
의 에 대해 풉니다.
단계 2.6.1
시컨트 안의 를 꺼내기 위해 방정식 양변에 시컨트의 역을 취합니다.
단계 2.7
모든 해를 나열합니다.
단계 3
Replace with to show the final answer.
단계 4
단계 4.1
역함수의 정의역은 원래 함수의 치역이고 그 반대도 마찬가지입니다. 및 의 정의역과 치역을 구하여 비교합니다.
단계 4.2
의 범위를 구합니다.
단계 4.2.1
치역은 모든 유효한 값의 집합입니다. 그래프를 이용하여 치역을 찾습니다.
구간 표기:
단계 4.3
의 정의역을 구합니다.
단계 4.3.1
식이 정의된 지점을 알아내려면 의 피개법수를 보다 크거나 같게 설정해야 합니다.
단계 4.3.2
식이 정의된 지점을 알아내려면 의 진수를 보다 작게 설정해야 합니다.
단계 4.3.3
에 대해 풉니다.
단계 4.3.3.1
좌변의 근호를 없애기 위해 부등식 양변을 제곱합니다.
단계 4.3.3.2
부등식의 양번을 간단히 합니다.
단계 4.3.3.2.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 4.3.3.2.2
좌변을 간단히 합니다.
단계 4.3.3.2.2.1
을 간단히 합니다.
단계 4.3.3.2.2.1.1
의 지수를 곱합니다.
단계 4.3.3.2.2.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 4.3.3.2.2.1.1.2
의 공약수로 약분합니다.
단계 4.3.3.2.2.1.1.2.1
공약수로 약분합니다.
단계 4.3.3.2.2.1.1.2.2
수식을 다시 씁니다.
단계 4.3.3.2.2.1.2
간단히 합니다.
단계 4.3.3.2.3
우변을 간단히 합니다.
단계 4.3.3.2.3.1
를 승 합니다.
단계 4.3.3.3
의 정의역을 구합니다.
단계 4.3.3.3.1
식이 정의된 지점을 알아내려면 의 피개법수를 보다 크거나 같게 설정해야 합니다.
단계 4.3.3.3.2
정의역은 수식을 정의하는 모든 유효한 값입니다.
단계 4.3.3.4
각 근을 사용하여 시험 구간을 만듭니다.
단계 4.3.3.5
각 구간에서 실험값을 선택하고 이를 원래의 부등식에 대입하여 어느 구간이 부등식을 만족하는지 확인합니다.
단계 4.3.3.5.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 4.3.3.5.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 4.3.3.5.1.2
원래 부등식에서 를 로 치환합니다.
단계 4.3.3.5.1.3
좌변이 우변과 같지 않으므로 주어진 명제는 거짓입니다.
False
False
단계 4.3.3.5.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 4.3.3.5.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 4.3.3.5.2.2
원래 부등식에서 를 로 치환합니다.
단계 4.3.3.5.2.3
좌변 이 우변 보다 크므로 주어진 명제는 거짓입니다.
False
False
단계 4.3.3.5.3
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 4.3.3.5.3.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 4.3.3.5.3.2
원래 부등식에서 를 로 치환합니다.
단계 4.3.3.5.3.3
좌변 이 우변 보다 크므로 주어진 명제는 거짓입니다.
False
False
단계 4.3.3.5.4
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
거짓
거짓
거짓
거짓
거짓
거짓
단계 4.3.3.6
구간 안에 속하는 수가 없으므로 부등식의 해가 존재하지 않습니다.
해 없음
해 없음
단계 4.3.4
식이 정의된 지점을 알아내려면 의 진수를 보다 크거나 같게 설정해야 합니다.
단계 4.3.5
에 대해 풉니다.
단계 4.3.5.1
좌변의 근호를 없애기 위해 부등식 양변을 제곱합니다.
단계 4.3.5.2
부등식의 양번을 간단히 합니다.
단계 4.3.5.2.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 4.3.5.2.2
좌변을 간단히 합니다.
단계 4.3.5.2.2.1
을 간단히 합니다.
단계 4.3.5.2.2.1.1
의 지수를 곱합니다.
단계 4.3.5.2.2.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 4.3.5.2.2.1.1.2
의 공약수로 약분합니다.
단계 4.3.5.2.2.1.1.2.1
공약수로 약분합니다.
단계 4.3.5.2.2.1.1.2.2
수식을 다시 씁니다.
단계 4.3.5.2.2.1.2
간단히 합니다.
단계 4.3.5.2.3
우변을 간단히 합니다.
단계 4.3.5.2.3.1
1의 모든 거듭제곱은 1입니다.
단계 4.3.5.3
의 정의역을 구합니다.
단계 4.3.5.3.1
식이 정의된 지점을 알아내려면 의 피개법수를 보다 크거나 같게 설정해야 합니다.
단계 4.3.5.3.2
정의역은 수식을 정의하는 모든 유효한 값입니다.
단계 4.3.5.4
해는 모두 참인 구간으로 이루어져 있습니다.
단계 4.3.6
정의역은 수식을 정의하는 모든 유효한 값입니다.
단계 4.4
의 정의역이 의 치역이 아니면는 의 역함수가 아닙니다.
역함수가 없음
역함수가 없음
단계 5