삼각법 예제

Résoudre pour x sin(x)<0
단계 1
사인 안의 를 꺼내기 위해 방정식 양변에 사인의 역을 취합니다.
단계 2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
의 정확한 값은 입니다.
단계 3
사인 함수는 제1사분면과 제2사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제2사분면에 속한 해를 구합니다.
단계 4
에서 을 뺍니다.
단계 5
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 5.2
주기 공식에서 을 대입합니다.
단계 5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 5.4
로 나눕니다.
단계 6
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
단계 7
답안을 하나로 합합니다.
임의의 정수 에 대해
단계 8
각 근을 사용하여 시험 구간을 만듭니다.
단계 9
각 구간에서 실험값을 선택하고 이를 원래의 부등식에 대입하여 어느 구간이 부등식을 만족하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 9.1.2
원래 부등식에서 로 치환합니다.
단계 9.1.3
좌변 이 우변 보다 작지 않으므로 주어진 명제는 거짓입니다.
False
False
단계 9.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 9.2.2
원래 부등식에서 로 치환합니다.
단계 9.2.3
좌변 이 우변 보다 작으므로 주어진 명제는 항상 참입니다.
True
True
단계 9.3
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
거짓
거짓
단계 10
해는 모두 참인 구간으로 이루어져 있습니다.
임의의 정수 에 대해
단계 11