삼각법 예제

항등식 증명하기 cot(x)sec(x)^4=cot(x)+2tan(x)+tan(x)^3
단계 1
우변부터 시작합니다.
단계 2
사인과 코사인으로 바꿉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
삼각함수 항등식을 이용하여 를 사인과 코사인으로 표현합니다.
단계 2.2
삼각함수 항등식을 이용하여 를 사인과 코사인으로 표현합니다.
단계 2.3
삼각함수 항등식을 이용하여 를 사인과 코사인으로 표현합니다.
단계 2.4
에 곱의 미분 법칙을 적용합니다.
단계 3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
을 묶습니다.
단계 3.2
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 3.3
각 수식에 적절한 인수 을 곱하여 수식의 분모가 모두 이 되도록 식을 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
을 곱합니다.
단계 3.3.2
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1.1
승 합니다.
단계 3.3.2.1.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.3.2.2
에 더합니다.
단계 3.4
공통분모를 가진 분자끼리 묶습니다.
단계 3.5
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.1
에서 를 인수분해합니다.
단계 3.5.2
에서 를 인수분해합니다.
단계 3.5.3
에서 를 인수분해합니다.
단계 3.6
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 3.7
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 3.8
각 수식에 적절한 인수 을 곱하여 수식의 분모가 모두 이 되도록 식을 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.8.1
을 곱합니다.
단계 3.8.2
을 곱합니다.
단계 3.8.3
인수를 다시 정렬합니다.
단계 3.9
공통분모를 가진 분자끼리 묶습니다.
단계 3.10
분자를 간단히 합니다.
단계 4
피타고라스의 정리를 적용합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
항을 다시 배열합니다.
단계 4.2
피타고라스의 정리를 적용합니다.
단계 5
1의 모든 거듭제곱은 1입니다.
단계 6
로 바꿔 씁니다.
단계 7
양변이 동일함을 보였으므로, 이 방정식은 항등식입니다.
은 항등식입니다