문제를 입력하십시오...
삼각법 예제
단계 1
여섯 개의 삼각함수 값을 알고 있는 각을 로 나누어 를 다시 씁니다.
단계 2
삼각함수의 역수 관계를 에 적용합니다.
단계 3
코사인 반각공식 을(를) 적용합니다.
단계 4
시컨트는 제1사분면에서 양수이므로 을(를) (으)로 바꿉니다.
단계 5
단계 5.1
분자를 간단히 합니다.
단계 5.1.1
각이 ° 에서 ° 사이에 속할 때까지 한 바퀴인 °를 여러 번 더합니다.
단계 5.1.2
의 정확한 값은 입니다.
단계 5.1.3
를 에 더합니다.
단계 5.2
분모를 간단히 합니다.
단계 5.2.1
을 로 바꿔 씁니다.
단계 5.2.2
의 거듭제곱근은 입니다.
단계 5.2.3
에 을 곱합니다.
단계 5.2.4
분모를 결합하고 간단히 합니다.
단계 5.2.4.1
에 을 곱합니다.
단계 5.2.4.2
를 승 합니다.
단계 5.2.4.3
를 승 합니다.
단계 5.2.4.4
지수 법칙 을 이용하여 지수를 합칩니다.
단계 5.2.4.5
를 에 더합니다.
단계 5.2.4.6
을 로 바꿔 씁니다.
단계 5.2.4.6.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 5.2.4.6.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 5.2.4.6.3
와 을 묶습니다.
단계 5.2.4.6.4
의 공약수로 약분합니다.
단계 5.2.4.6.4.1
공약수로 약분합니다.
단계 5.2.4.6.4.2
수식을 다시 씁니다.
단계 5.2.4.6.5
지수값을 계산합니다.
단계 5.3
분자에 분모의 역수를 곱합니다.
단계 5.4
에 을 곱합니다.
단계 5.5
에 을 곱합니다.
단계 5.6
분모를 결합하고 간단히 합니다.
단계 5.6.1
에 을 곱합니다.
단계 5.6.2
를 승 합니다.
단계 5.6.3
를 승 합니다.
단계 5.6.4
지수 법칙 을 이용하여 지수를 합칩니다.
단계 5.6.5
를 에 더합니다.
단계 5.6.6
을 로 바꿔 씁니다.
단계 5.6.6.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 5.6.6.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 5.6.6.3
와 을 묶습니다.
단계 5.6.6.4
의 공약수로 약분합니다.
단계 5.6.6.4.1
공약수로 약분합니다.
단계 5.6.6.4.2
수식을 다시 씁니다.
단계 5.6.6.5
지수값을 계산합니다.
단계 5.7
의 공약수로 약분합니다.
단계 5.7.1
공약수로 약분합니다.
단계 5.7.2
을 로 나눕니다.
단계 6
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태: