문제를 입력하십시오...
삼각법 예제
cot(x)=√3
단계 1
코탄젠트 안의 x를 꺼내기 위해 방정식 양변에 코탄젠트의 역을 취합니다.
x=arccot(√3)
단계 2
단계 2.1
arccot(√3)의 정확한 값은 π6입니다.
x=π6
x=π6
단계 3
코탄젠트 함수는 제1사분면과 제3사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 π에 기준각을 더하여 제4사분면에 있는 해를 구합니다.
x=π+π6
단계 4
단계 4.1
공통 분모를 가지는 분수로 π을 표현하기 위해 66을 곱합니다.
x=π⋅66+π6
단계 4.2
분수를 통분합니다.
단계 4.2.1
π와 66을 묶습니다.
x=π⋅66+π6
단계 4.2.2
공통분모를 가진 분자끼리 묶습니다.
x=π⋅6+π6
x=π⋅6+π6
단계 4.3
분자를 간단히 합니다.
단계 4.3.1
π의 왼쪽으로 6 이동하기
x=6⋅π+π6
단계 4.3.2
6π를 π에 더합니다.
x=7π6
x=7π6
x=7π6
단계 5
단계 5.1
함수의 주기는 π|b|를 이용하여 구할 수 있습니다.
π|b|
단계 5.2
주기 공식에서 b 에 1 을 대입합니다.
π|1|
단계 5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 0과 1 사이의 거리는 1입니다.
π1
단계 5.4
π을 1로 나눕니다.
π
π
단계 6
함수 cot(x) 의 주기는 π이므로 양 방향으로 π 라디안마다 값이 반복됩니다.
임의의 정수 n에 대해 x=π6+πn,7π6+πn
단계 7
답안을 하나로 합합니다.
임의의 정수 n에 대해 x=π6+πn