기초 미적분 예제

정의역 구하기 g(x) = 로그 16x-x^2
단계 1
식이 정의된 지점을 알아내려면 의 진수를 보다 크게 설정해야 합니다.
단계 2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
부등식을 방정식으로 바꿉니다.
단계 2.2
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
에서 를 인수분해합니다.
단계 2.2.2
에서 를 인수분해합니다.
단계 2.2.3
에서 를 인수분해합니다.
단계 2.3
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 2.4
와 같다고 둡니다.
단계 2.5
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1
와 같다고 둡니다.
단계 2.5.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.2.1
방정식의 양변에서 를 뺍니다.
단계 2.5.2.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.2.2.1
의 각 항을 로 나눕니다.
단계 2.5.2.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.2.2.2.1
두 음수를 나누면 양수가 나옵니다.
단계 2.5.2.2.2.2
로 나눕니다.
단계 2.5.2.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.2.2.3.1
로 나눕니다.
단계 2.6
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 2.7
각 근을 사용하여 시험 구간을 만듭니다.
단계 2.8
각 구간에서 실험값을 선택하고 이를 원래의 부등식에 대입하여 어느 구간이 부등식을 만족하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.8.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.8.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 2.8.1.2
원래 부등식에서 로 치환합니다.
단계 2.8.1.3
좌변 이 우변 보다 크지 않으므로 주어진 명제는 거짓입니다.
거짓
거짓
단계 2.8.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.8.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 2.8.2.2
원래 부등식에서 로 치환합니다.
단계 2.8.2.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
단계 2.8.3
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.8.3.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 2.8.3.2
원래 부등식에서 로 치환합니다.
단계 2.8.3.3
좌변 이 우변 보다 크지 않으므로 주어진 명제는 거짓입니다.
거짓
거짓
단계 2.8.4
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
거짓
거짓
거짓
거짓
단계 2.9
해는 모두 참인 구간으로 이루어져 있습니다.
단계 3
정의역은 수식을 정의하는 모든 유효한 값입니다.
구간 표기:
조건제시법:
단계 4