기초 미적분 예제

근(영점) 구하기 (3x+5)(x^2-6x+9)^2
단계 1
와 같다고 둡니다.
단계 2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 2.2
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
와 같다고 둡니다.
단계 2.2.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1
방정식의 양변에서 를 뺍니다.
단계 2.2.2.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.2.1
의 각 항을 로 나눕니다.
단계 2.2.2.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.2.2.1.1
공약수로 약분합니다.
단계 2.2.2.2.2.1.2
로 나눕니다.
단계 2.2.2.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.2.3.1
마이너스 부호를 분수 앞으로 보냅니다.
단계 2.3
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
와 같다고 둡니다.
단계 2.3.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1
와 같다고 둡니다.
단계 2.3.2.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.2.1
완전제곱 법칙을 이용하여 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.2.1.1
로 바꿔 씁니다.
단계 2.3.2.2.1.2
중간 항이 첫 번째 항 및 세 번째 항에서 제곱되는 수를 곱한 값의 두 배인지 확인합니다.
단계 2.3.2.2.1.3
다항식을 다시 씁니다.
단계 2.3.2.2.1.4
이고 일 때 완전제곱 삼항식 법칙 을 이용하여 인수분해합니다.
단계 2.3.2.2.2
와 같다고 둡니다.
단계 2.3.2.2.3
방정식의 양변에 를 더합니다.
단계 2.4
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 3