기초 미적분 예제

점근선 구하기 (x^2+6x+8)/(x+4)
단계 1
가 정의되지 않는 구간을 찾습니다.
단계 2
수직점근선은 무한 불연속인 영역에서 나타납니다.
수직점근선 없음
단계 3
분자의 차수가 , 분모의 차수가 인 유리 함수 를 사용합니다.
1. 이면 x축, 이 수평점근선입니다.
2. 이면, 수평점근선은 선입니다.
3. 이면, 수평점근선이 존재하지 않습니다(사선점근선이 존재합니다).
단계 4
값을 구합니다.
단계 5
이므로, 수평점근선이 존재하지 않습니다.
수평점근선 없음
단계 6
다항식의 나눗셈을 이용하여 사선점근선을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1.1
AC 방법을 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1.1.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 6.1.1.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 6.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1.2.1
공약수로 약분합니다.
단계 6.1.2.2
로 나눕니다.
단계 6.2
사선점근선은 긴 나눗셈의 결과에서 다항식 부분입니다.
단계 7
모든 점근선의 집합입니다.
수직점근선 없음
수평점근선 없음
사선점근선:
단계 8