기초 미적분 예제

삼각함수 형태로 바꾸기 (6(cos(5pi)+isin(5pi)))/(3(cos(2pi)+isin(2pi)))
단계 1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
에서 를 인수분해합니다.
단계 1.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
공약수로 약분합니다.
단계 1.2.2
수식을 다시 씁니다.
단계 2
분모를 실수로 만들려면 의 분자와 분모에 의 켤레복소수를 곱합니다.
단계 3
곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
조합합니다.
단계 3.2
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1
각이 보다 크거나 같고 보다 작을 때까지 한 바퀴인 를 여러 번 뺍니다.
단계 3.2.1.2
제1사분면에서 동일한 삼각값을 갖는 각도를 찾아 기준 각도를 적용합니다. 제2사분면에서 코사인이 음수이므로 수식에 마이너스 부호를 붙입니다.
단계 3.2.1.3
의 정확한 값은 입니다.
단계 3.2.1.4
을 곱합니다.
단계 3.2.1.5
각이 보다 크거나 같고 보다 작을 때까지 한 바퀴인 를 여러 번 뺍니다.
단계 3.2.1.6
제1사분면에서 동일한 삼각값을 갖는 각도를 찾아 기준 각도를 적용합니다.
단계 3.2.1.7
의 정확한 값은 입니다.
단계 3.2.1.8
을 곱합니다.
단계 3.2.2
에 더합니다.
단계 3.2.3
을 곱합니다.
단계 3.2.4
분배 법칙을 적용합니다.
단계 3.2.5
을 곱합니다.
단계 3.2.6
을 곱합니다.
단계 3.3
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1
분배 법칙을 적용합니다.
단계 3.3.1.2
분배 법칙을 적용합니다.
단계 3.3.1.3
분배 법칙을 적용합니다.
단계 3.3.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1
을 곱합니다.
단계 3.3.2.2
을 곱합니다.
단계 3.3.2.3
을 곱합니다.
단계 3.3.2.4
을 곱합니다.
단계 3.3.2.5
승 합니다.
단계 3.3.2.6
승 합니다.
단계 3.3.2.7
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.3.2.8
에 더합니다.
단계 3.3.2.9
을 곱합니다.
단계 3.3.2.10
에 더합니다.
단계 3.3.2.11
에서 을 뺍니다.
단계 3.3.3
을 곱합니다.
단계 3.3.4
에 더합니다.
단계 4
로 나눕니다.
단계 5
삼각함수 형식으로 복소수를 표현하는 방법으로, 는 절댓값이고 는 복소평면에서의 편각입니다.
단계 6
복소수의 절대값은 복소평면에서 원점으로부터의 거리입니다.
일 때 입니다
단계 7
실제값인 를 대입합니다.
단계 8
를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
승 합니다.
단계 8.2
승 합니다.
단계 8.3
에 더합니다.
단계 8.4
로 바꿔 씁니다.
단계 8.5
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 9
복소평면에서의 점의 각은 복소수 부분을 실수 부분으로 나눈 값의 역탄젠트값입니다.
단계 10
에 역탄젠트를 취하면 제3사분면의 각이 나오며 이 각의 값은 입니다.
단계 11
, 값을 대입합니다.