기초 미적분 예제

중심 찾기 16x^2-9y^2-64x-18y-89=0
단계 1
쌍곡선 방정식의 표준형을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
방정식의 양변에 를 더합니다.
단계 1.2
를 완전제곱식 형태로 만듭니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
형태를 이용해 , , 값을 구합니다.
단계 1.2.2
포물선 방정식의 꼭짓점 형태를 이용합니다.
단계 1.2.3
공식을 이용하여 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.1
값을 공식 에 대입합니다.
단계 1.2.3.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.2.1.1
에서 를 인수분해합니다.
단계 1.2.3.2.1.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.2.1.2.1
에서 를 인수분해합니다.
단계 1.2.3.2.1.2.2
공약수로 약분합니다.
단계 1.2.3.2.1.2.3
수식을 다시 씁니다.
단계 1.2.3.2.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.2.2.1
에서 를 인수분해합니다.
단계 1.2.3.2.2.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.2.2.2.1
에서 를 인수분해합니다.
단계 1.2.3.2.2.2.2
공약수로 약분합니다.
단계 1.2.3.2.2.2.3
수식을 다시 씁니다.
단계 1.2.3.2.2.2.4
로 나눕니다.
단계 1.2.4
공식을 이용하여 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.4.1
, , 값을 공식 에 대입합니다.
단계 1.2.4.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.4.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.4.2.1.1
승 합니다.
단계 1.2.4.2.1.2
을 곱합니다.
단계 1.2.4.2.1.3
로 나눕니다.
단계 1.2.4.2.1.4
을 곱합니다.
단계 1.2.4.2.2
에서 을 뺍니다.
단계 1.2.5
, , 값을 꼭짓점 형태 에 대입합니다.
단계 1.3
로 바꿔 방정식 에 대입합니다.
단계 1.4
양변에 을 더하여 을 방정식의 우변으로 보냅니다.
단계 1.5
를 완전제곱식 형태로 만듭니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1
형태를 이용해 , , 값을 구합니다.
단계 1.5.2
포물선 방정식의 꼭짓점 형태를 이용합니다.
단계 1.5.3
공식을 이용하여 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.3.1
값을 공식 에 대입합니다.
단계 1.5.3.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.3.2.1.1
에서 를 인수분해합니다.
단계 1.5.3.2.1.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.3.2.1.2.1
에서 를 인수분해합니다.
단계 1.5.3.2.1.2.2
공약수로 약분합니다.
단계 1.5.3.2.1.2.3
수식을 다시 씁니다.
단계 1.5.3.2.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.3.2.2.1
공약수로 약분합니다.
단계 1.5.3.2.2.2
수식을 다시 씁니다.
단계 1.5.4
공식을 이용하여 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.4.1
, , 값을 공식 에 대입합니다.
단계 1.5.4.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.4.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.4.2.1.1
승 합니다.
단계 1.5.4.2.1.2
을 곱합니다.
단계 1.5.4.2.1.3
로 나눕니다.
단계 1.5.4.2.1.4
을 곱합니다.
단계 1.5.4.2.2
에 더합니다.
단계 1.5.5
, , 값을 꼭짓점 형태 에 대입합니다.
단계 1.6
로 바꿔 방정식 에 대입합니다.
단계 1.7
양변에 을 더하여 을 방정식의 우변으로 보냅니다.
단계 1.8
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.8.1
에 더합니다.
단계 1.8.2
에서 을 뺍니다.
단계 1.9
각 항을 로 나눠 우변이 1이 되게 합니다.
단계 1.10
우변을 로 만들기 위하여 식의 각 변을 간단히 합니다. 타원 또는 쌍곡선의 표준식의 우변은 입니다.
단계 2
쌍곡선의 공식입니다. 이 공식을 이용하여 쌍곡선의 점근선을 구하는 데 사용되는 값들을 계산합니다.
단계 3
이 쌍곡선에서의 값과 표준형을 비교합니다. 변수 는 원점에서 x축 방향으로 떨어진 거리를 나타내고 는 원점에서 y축 방향으로 떨어진 거리 를 나타냅니다.
단계 4
쌍곡선의 중심은 형태입니다. 값을 식에 대입합니다.
단계 5