문제를 입력하십시오...
기초 미적분 예제
단계 1
식이 정의된 지점을 알아내려면 의 진수를 보다 크게 설정해야 합니다.
단계 2
단계 2.1
모든 인수가 이 되도록 인수식을 풀어서 수식의 부호가 음수에서 양수로 바뀌는 모든 값을 찾습니다.
단계 2.2
방정식의 양변에서 를 뺍니다.
단계 2.3
방정식의 양변에 를 더합니다.
단계 2.4
각 인수에 대해 식을 풀어 절댓값 식이 음에서 양으로 가는 값을 구합니다.
단계 2.5
해를 하나로 합합니다.
단계 2.6
의 정의역을 구합니다.
단계 2.6.1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 2.6.2
방정식의 양변에 를 더합니다.
단계 2.6.3
정의역은 수식을 정의하는 모든 유효한 값입니다.
단계 2.7
각 근을 사용하여 시험 구간을 만듭니다.
단계 2.8
각 구간에서 실험값을 선택하고 이를 원래의 부등식에 대입하여 어느 구간이 부등식을 만족하는지 확인합니다.
단계 2.8.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 2.8.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 2.8.1.2
원래 부등식에서 를 로 치환합니다.
단계 2.8.1.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
참
참
단계 2.8.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 2.8.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 2.8.2.2
원래 부등식에서 를 로 치환합니다.
단계 2.8.2.3
좌변 이 우변 보다 크지 않으므로 주어진 명제는 거짓입니다.
거짓
거짓
단계 2.8.3
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 2.8.3.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 2.8.3.2
원래 부등식에서 를 로 치환합니다.
단계 2.8.3.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
참
참
단계 2.8.4
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
참
거짓
참
참
거짓
참
단계 2.9
해는 모두 참인 구간으로 이루어져 있습니다.
또는
또는
단계 3
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 4
방정식의 양변에 를 더합니다.
단계 5
정의역은 수식을 정의하는 모든 유효한 값입니다.
구간 표기:
조건제시법:
단계 6