기초 미적분 예제

유리근 판정법을 이용하여 근/영점 구하기 2x^3-3x^2-4x+6=0
단계 1
다항함수의 계수가 정수인 경우, 가 상수의 약수이며 가 최고차항 계수의 인수일 때 모든 유리근은 의 형태를 가집니다.
단계 2
의 모든 조합을 찾습니다. 이들은 다항 함수의 해가 될 수 있습니다.
단계 3
다항식에 해로 생각되는 값을 대입하여 해를 알아냅니다. 계산값이 라면 대입값이 해임을 의미합니다.
단계 4
식을 간단히 합니다. 이 경우 식이 이므로 은 다항식의 근입니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.1
에 곱의 미분 법칙을 적용합니다.
단계 4.1.2
승 합니다.
단계 4.1.3
승 합니다.
단계 4.1.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.4.1
에서 를 인수분해합니다.
단계 4.1.4.2
공약수로 약분합니다.
단계 4.1.4.3
수식을 다시 씁니다.
단계 4.1.5
에 곱의 미분 법칙을 적용합니다.
단계 4.1.6
승 합니다.
단계 4.1.7
승 합니다.
단계 4.1.8
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.8.1
을 묶습니다.
단계 4.1.8.2
을 곱합니다.
단계 4.1.9
마이너스 부호를 분수 앞으로 보냅니다.
단계 4.1.10
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.10.1
에서 를 인수분해합니다.
단계 4.1.10.2
공약수로 약분합니다.
단계 4.1.10.3
수식을 다시 씁니다.
단계 4.1.11
을 곱합니다.
단계 4.2
분수를 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
공통분모를 가진 분자끼리 묶습니다.
단계 4.2.2
에서 을 뺍니다.
단계 4.3
공통분모를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
를 분모가 인 분수로 표현합니다.
단계 4.3.2
을 곱합니다.
단계 4.3.3
을 곱합니다.
단계 4.3.4
를 분모가 인 분수로 표현합니다.
단계 4.3.5
을 곱합니다.
단계 4.3.6
을 곱합니다.
단계 4.4
공통분모를 가진 분자끼리 묶습니다.
단계 4.5
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.1
을 곱합니다.
단계 4.5.2
을 곱합니다.
단계 4.6
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.6.1
에 더합니다.
단계 4.6.2
로 나눕니다.
단계 5
는 이미 구한 해이므로 다항식을 으로 나누어 몫 다항식을 알아냅니다. 이 다항식은 다른 해를 찾기 위해 이용됩니다.
단계 6
그 다음, 나머지 다항식의 근을 구합니다. 다항식의 차수는 만큼 줄었습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
제수와 피제수에 해당하는 숫자를 나눗셈 형태로 나타냅니다.
  
단계 6.2
피제수 의 첫 번째 수는 결과 부분(가로 선 아래)에 첫 번째로 적습니다.
  
단계 6.3
제수 에 결과의 가장 최근 값 을 곱하여 나온 값 을 피제수 의 다음 항 아래에 적습니다.
  
단계 6.4
곱셈값과 피제수의 숫자의 곱을 더하고 그 결과를 결과 열의 다음 위치에 적습니다.
  
단계 6.5
제수 에 결과의 가장 최근 값 을 곱하여 나온 값 을 피제수 의 다음 항 아래에 적습니다.
  
단계 6.6
곱셈값과 피제수의 숫자의 곱을 더하고 그 결과를 결과 열의 다음 위치에 적습니다.
  
단계 6.7
제수 에 결과의 가장 최근 값 을 곱하여 나온 값 을 피제수 의 다음 항 아래에 적습니다.
 
단계 6.8
곱셈값과 피제수의 숫자의 곱을 더하고 그 결과를 결과 열의 다음 위치에 적습니다.
 
단계 6.9
마지막 수를 제외한 모든 수는 몫 다항식의 계수가 됩니다. 결과열의 마지막 값이 나머지입니다.
단계 6.10
몫 다항식을 간단히 합니다.
단계 7
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
에서 를 인수분해합니다.
단계 7.2
에서 를 인수분해합니다.
단계 7.3
에서 를 인수분해합니다.
단계 8
방정식의 좌변을 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
각 그룹에서 최대공약수를 밖으로 뺍니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 8.1.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 8.2
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 9
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 10
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1
와 같다고 둡니다.
단계 10.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.2.1
방정식의 양변에 를 더합니다.
단계 10.2.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.2.2.1
의 각 항을 로 나눕니다.
단계 10.2.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.2.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.2.2.2.1.1
공약수로 약분합니다.
단계 10.2.2.2.1.2
로 나눕니다.
단계 11
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.1
와 같다고 둡니다.
단계 11.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.2.1
방정식의 양변에 를 더합니다.
단계 11.2.2
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 11.2.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.2.3.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 11.2.3.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 11.2.3.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 12
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 13
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태:
대분수 형식:
단계 14