문제를 입력하십시오...
기초 미적분 예제
단계 1
식이 정의된 지점을 알아내려면 의 피개법수를 보다 크거나 같게 설정해야 합니다.
단계 2
단계 2.1
모든 인수가 이 되도록 인수식을 풀어서 수식의 부호가 음수에서 양수로 바뀌는 모든 값을 찾습니다.
단계 2.2
AC 방법을 이용하여 를 인수분해합니다.
단계 2.2.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 2.2.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 2.3
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 2.4
이 가 되도록 하고 에 대해 식을 풉니다.
단계 2.4.1
를 와 같다고 둡니다.
단계 2.4.2
방정식의 양변에 를 더합니다.
단계 2.5
이 가 되도록 하고 에 대해 식을 풉니다.
단계 2.5.1
를 와 같다고 둡니다.
단계 2.5.2
방정식의 양변에 를 더합니다.
단계 2.6
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 2.7
방정식의 양변에 를 더합니다.
단계 2.8
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
단계 2.9
의 거듭제곱근은 입니다.
단계 2.10
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 2.10.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 2.10.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 2.10.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 2.11
각 인수에 대해 식을 풀어 절댓값 식이 음에서 양으로 가는 값을 구합니다.
단계 2.12
해를 하나로 합합니다.
단계 2.13
의 정의역을 구합니다.
단계 2.13.1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 2.13.2
에 대해 풉니다.
단계 2.13.2.1
방정식의 양변에 를 더합니다.
단계 2.13.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
단계 2.13.2.3
의 거듭제곱근은 입니다.
단계 2.13.2.4
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 2.13.2.4.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 2.13.2.4.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 2.13.2.4.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 2.13.3
정의역은 수식을 정의하는 모든 유효한 값입니다.
단계 2.14
각 근을 사용하여 시험 구간을 만듭니다.
단계 2.15
각 구간에서 실험값을 선택하고 이를 원래의 부등식에 대입하여 어느 구간이 부등식을 만족하는지 확인합니다.
단계 2.15.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 2.15.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 2.15.1.2
원래 부등식에서 를 로 치환합니다.
단계 2.15.1.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
True
True
단계 2.15.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 2.15.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 2.15.2.2
원래 부등식에서 를 로 치환합니다.
단계 2.15.2.3
좌변 이 우변 보다 작으므로 주어진 명제는 거짓입니다.
False
False
단계 2.15.3
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 2.15.3.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 2.15.3.2
원래 부등식에서 를 로 치환합니다.
단계 2.15.3.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
True
True
단계 2.15.4
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 2.15.4.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 2.15.4.2
원래 부등식에서 를 로 치환합니다.
단계 2.15.4.3
좌변 이 우변 보다 작으므로 주어진 명제는 거짓입니다.
False
False
단계 2.15.5
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 2.15.5.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 2.15.5.2
원래 부등식에서 를 로 치환합니다.
단계 2.15.5.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
True
True
단계 2.15.6
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
참
거짓
참
거짓
참
참
거짓
참
거짓
참
단계 2.16
해는 모두 참인 구간으로 이루어져 있습니다.
또는 또는
또는 또는
단계 3
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 4
단계 4.1
방정식의 양변에 를 더합니다.
단계 4.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
단계 4.3
의 거듭제곱근은 입니다.
단계 4.4
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 4.4.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 4.4.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 4.4.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 5
정의역은 수식을 정의하는 모든 유효한 값입니다.
구간 표기:
조건제시법:
단계 6