문제를 입력하십시오...
기초 미적분 예제
단계 1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 2
단계 2.1
공통인수를 이용하여 인수분해를 합니다.
단계 2.1.1
형태의 다항식에 대해 곱이 이고 합이 인 두 항의 합으로 중간항을 다시 씁니다.
단계 2.1.1.1
을 곱합니다.
단계 2.1.1.2
를 + 로 다시 씁니다.
단계 2.1.1.3
분배 법칙을 적용합니다.
단계 2.1.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 2.1.2.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 2.1.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 2.1.3
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 2.2
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 2.3
이 가 되도록 하고 에 대해 식을 풉니다.
단계 2.3.1
를 와 같다고 둡니다.
단계 2.3.2
을 에 대해 풉니다.
단계 2.3.2.1
방정식의 양변에 를 더합니다.
단계 2.3.2.2
의 각 항을 로 나누고 식을 간단히 합니다.
단계 2.3.2.2.1
의 각 항을 로 나눕니다.
단계 2.3.2.2.2
좌변을 간단히 합니다.
단계 2.3.2.2.2.1
의 공약수로 약분합니다.
단계 2.3.2.2.2.1.1
공약수로 약분합니다.
단계 2.3.2.2.2.1.2
을 로 나눕니다.
단계 2.4
이 가 되도록 하고 에 대해 식을 풉니다.
단계 2.4.1
를 와 같다고 둡니다.
단계 2.4.2
방정식의 양변에서 를 뺍니다.
단계 2.5
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 3
정의역은 수식을 정의하는 모든 유효한 값입니다.
구간 표기:
조건제시법:
단계 4