문제를 입력하십시오...
기초 미적분 예제
단계 1
단계 1.1
각 항을 간단히 합니다.
단계 1.1.1
사인과 코사인으로 표현되도록 수식을 바꾸고 공약수를 소거합니다.
단계 1.1.1.1
괄호를 표시합니다.
단계 1.1.1.2
를 사인과 코사인을 사용하여 다시 표현합니다.
단계 1.1.1.3
공약수로 약분합니다.
단계 1.1.2
를 사인과 코사인을 사용하여 다시 표현합니다.
단계 2
방정식의 양변에 을 곱합니다.
단계 3
분배 법칙을 적용합니다.
단계 4
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 5
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 6
단계 6.1
와 을 다시 정렬합니다.
단계 6.2
와 을 다시 정렬합니다.
단계 6.3
사인 배각 공식을 적용합니다.
단계 6.4
의 공약수로 약분합니다.
단계 6.4.1
에서 를 인수분해합니다.
단계 6.4.2
공약수로 약분합니다.
단계 6.4.3
수식을 다시 씁니다.
단계 7
에 을 곱합니다.
단계 8
사인 배각 공식을 적용합니다.
단계 9
단계 9.1
에서 를 인수분해합니다.
단계 9.2
에서 를 인수분해합니다.
단계 9.3
에서 를 인수분해합니다.
단계 10
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 11
단계 11.1
를 와 같다고 둡니다.
단계 11.2
을 에 대해 풉니다.
단계 11.2.1
사인 안의 를 꺼내기 위해 방정식 양변에 사인의 역을 취합니다.
단계 11.2.2
우변을 간단히 합니다.
단계 11.2.2.1
의 정확한 값은 입니다.
단계 11.2.3
사인 함수는 제1사분면과 제2사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제2사분면에 속한 해를 구합니다.
단계 11.2.4
에서 을 뺍니다.
단계 11.2.5
주기를 구합니다.
단계 11.2.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 11.2.5.2
주기 공식에서 에 을 대입합니다.
단계 11.2.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 과 사이의 거리는 입니다.
단계 11.2.5.4
을 로 나눕니다.
단계 11.2.6
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
임의의 정수 에 대해
단계 12
단계 12.1
를 와 같다고 둡니다.
단계 12.2
을 에 대해 풉니다.
단계 12.2.1
방정식의 양변에 를 더합니다.
단계 12.2.2
의 각 항을 로 나누고 식을 간단히 합니다.
단계 12.2.2.1
의 각 항을 로 나눕니다.
단계 12.2.2.2
좌변을 간단히 합니다.
단계 12.2.2.2.1
의 공약수로 약분합니다.
단계 12.2.2.2.1.1
공약수로 약분합니다.
단계 12.2.2.2.1.2
을 로 나눕니다.
단계 12.2.3
코사인 안의 를 꺼내기 위해 방정식 양변에 코사인의 역을 취합니다.
단계 12.2.4
우변을 간단히 합니다.
단계 12.2.4.1
의 정확한 값은 입니다.
단계 12.2.5
코사인 함수는 제1사분면과 제4사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제4사분면에 있는 해를 구합니다.
단계 12.2.6
을 간단히 합니다.
단계 12.2.6.1
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 12.2.6.2
분수를 통분합니다.
단계 12.2.6.2.1
와 을 묶습니다.
단계 12.2.6.2.2
공통분모를 가진 분자끼리 묶습니다.
단계 12.2.6.3
분자를 간단히 합니다.
단계 12.2.6.3.1
에 을 곱합니다.
단계 12.2.6.3.2
에서 을 뺍니다.
단계 12.2.7
주기를 구합니다.
단계 12.2.7.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 12.2.7.2
주기 공식에서 에 을 대입합니다.
단계 12.2.7.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 과 사이의 거리는 입니다.
단계 12.2.7.4
을 로 나눕니다.
단계 12.2.8
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
임의의 정수 에 대해
단계 13
을 참으로 만드는 모든 값이 최종 해가 됩니다.
임의의 정수 에 대해
단계 14
, 를 에 통합합니다.
임의의 정수 에 대해