기초 미적분 예제

간단히 정리하기 (x^2-3x)/(x^3-4x^2+3x)+2/(x^2-1)
단계 1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
에서 를 인수분해합니다.
단계 1.1.2
에서 를 인수분해합니다.
단계 1.1.3
에서 를 인수분해합니다.
단계 1.2
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1.1
에서 를 인수분해합니다.
단계 1.2.1.2
에서 를 인수분해합니다.
단계 1.2.1.3
에서 를 인수분해합니다.
단계 1.2.1.4
에서 를 인수분해합니다.
단계 1.2.1.5
에서 를 인수분해합니다.
단계 1.2.2
AC 방법을 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 1.2.2.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 1.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
공약수로 약분합니다.
단계 1.3.2
수식을 다시 씁니다.
단계 1.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1
공약수로 약분합니다.
단계 1.4.2
수식을 다시 씁니다.
단계 1.5
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1
로 바꿔 씁니다.
단계 1.5.2
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 2
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 3
각 수식에 적절한 인수 을 곱하여 수식의 분모가 모두 이 되도록 식을 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
을 곱합니다.
단계 3.2
인수를 다시 정렬합니다.
단계 4
공통분모를 가진 분자끼리 묶습니다.
단계 5
에 더합니다.