기초 미적분 예제

Résoudre pour x e^x=e^(x^2-12)
단계 1
방정식에서 지수의 밑이 모두 같은 동일한 수식이 되도록 만듭니다.
단계 2
밑이 같으므로 지수가 같을 경우에만 두 식은 같습니다.
단계 3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
방정식의 양변에서 를 뺍니다.
단계 3.2
방정식의 양변에 를 더합니다.
단계 3.3
방정식의 좌변을 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1
을 다시 정렬합니다.
단계 3.3.1.2
에서 를 인수분해합니다.
단계 3.3.1.3
에서 를 인수분해합니다.
단계 3.3.1.4
로 바꿔 씁니다.
단계 3.3.1.5
에서 를 인수분해합니다.
단계 3.3.1.6
에서 를 인수분해합니다.
단계 3.3.2
인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1
AC 방법을 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 3.3.2.1.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 3.3.2.2
불필요한 괄호를 제거합니다.
단계 3.4
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 3.5
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.1
와 같다고 둡니다.
단계 3.5.2
방정식의 양변에 를 더합니다.
단계 3.6
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.6.1
와 같다고 둡니다.
단계 3.6.2
방정식의 양변에서 를 뺍니다.
단계 3.7
을 참으로 만드는 모든 값이 최종 해가 됩니다.