문제를 입력하십시오...
기초 미적분 예제
단계 1
단계 1.1
공통인수를 이용하여 인수분해를 합니다.
단계 1.1.1
형태의 다항식에 대해 곱이 이고 합이 인 두 항의 합으로 중간항을 다시 씁니다.
단계 1.1.1.1
에서 를 인수분해합니다.
단계 1.1.1.2
를 + 로 다시 씁니다.
단계 1.1.1.3
분배 법칙을 적용합니다.
단계 1.1.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 1.1.2.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 1.1.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 1.1.3
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 1.2
공통인수를 이용하여 인수분해를 합니다.
단계 1.2.1
형태의 다항식에 대해 곱이 이고 합이 인 두 항의 합으로 중간항을 다시 씁니다.
단계 1.2.1.1
에서 를 인수분해합니다.
단계 1.2.1.2
를 + 로 다시 씁니다.
단계 1.2.1.3
분배 법칙을 적용합니다.
단계 1.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 1.2.2.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 1.2.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 1.2.3
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 2
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 3
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 4
단계 4.1
에 을 곱합니다.
단계 4.2
에 을 곱합니다.
단계 4.3
인수를 다시 정렬합니다.
단계 4.4
인수를 다시 정렬합니다.
단계 5
공통분모를 가진 분자끼리 묶습니다.
단계 6
단계 6.1
에서 를 인수분해합니다.
단계 6.1.1
에서 를 인수분해합니다.
단계 6.1.2
에서 를 인수분해합니다.
단계 6.1.3
에서 를 인수분해합니다.
단계 6.2
분배 법칙을 적용합니다.
단계 6.3
에 을 곱합니다.
단계 6.4
에 을 곱합니다.
단계 6.5
분배 법칙을 적용합니다.
단계 6.6
에 을 곱합니다.
단계 6.7
에 을 곱합니다.
단계 6.8
에서 을 뺍니다.
단계 6.9
에서 을 뺍니다.