기초 미적분 예제

유리근 판정법을 이용하여 근/영점 구하기 x^3-4x^2+36x-144
단계 1
다항함수의 계수가 정수인 경우, 가 상수의 약수이며 가 최고차항 계수의 인수일 때 모든 유리근은 의 형태를 가집니다.
단계 2
의 모든 조합을 찾습니다. 이들은 다항 함수의 해가 될 수 있습니다.
단계 3
다항식에 해로 생각되는 값을 대입하여 해를 알아냅니다. 계산값이 라면 대입값이 해임을 의미합니다.
단계 4
식을 간단히 합니다. 이 경우 식이 이므로 은 다항식의 근입니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.1
승 합니다.
단계 4.1.2
승 합니다.
단계 4.1.3
을 곱합니다.
단계 4.1.4
을 곱합니다.
단계 4.2
더하고 빼서 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
에서 을 뺍니다.
단계 4.2.2
에 더합니다.
단계 4.2.3
에서 을 뺍니다.
단계 5
는 이미 구한 해이므로 다항식을 으로 나누어 몫 다항식을 알아냅니다. 이 다항식은 다른 해를 찾기 위해 이용됩니다.
단계 6
그 다음, 나머지 다항식의 근을 구합니다. 다항식의 차수는 만큼 줄었습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
제수와 피제수에 해당하는 숫자를 나눗셈 형태로 나타냅니다.
  
단계 6.2
피제수 의 첫 번째 수는 결과 부분(가로 선 아래)에 첫 번째로 적습니다.
  
단계 6.3
제수 에 결과의 가장 최근 값 을 곱하여 나온 값 을 피제수 의 다음 항 아래에 적습니다.
  
단계 6.4
곱셈값과 피제수의 숫자의 곱을 더하고 그 결과를 결과 열의 다음 위치에 적습니다.
  
단계 6.5
제수 에 결과의 가장 최근 값 을 곱하여 나온 값 을 피제수 의 다음 항 아래에 적습니다.
  
단계 6.6
곱셈값과 피제수의 숫자의 곱을 더하고 그 결과를 결과 열의 다음 위치에 적습니다.
  
단계 6.7
제수 에 결과의 가장 최근 값 을 곱하여 나온 값 을 피제수 의 다음 항 아래에 적습니다.
 
단계 6.8
곱셈값과 피제수의 숫자의 곱을 더하고 그 결과를 결과 열의 다음 위치에 적습니다.
 
단계 6.9
마지막 수를 제외한 모든 수는 몫 다항식의 계수가 됩니다. 결과열의 마지막 값이 나머지입니다.
단계 6.10
몫 다항식을 간단히 합니다.
단계 7
방정식을 풀어 나머지 근을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
방정식의 양변에서 를 뺍니다.
단계 7.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
단계 7.3
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.3.1
로 바꿔 씁니다.
단계 7.3.2
로 바꿔 씁니다.
단계 7.3.3
로 바꿔 씁니다.
단계 7.3.4
로 바꿔 씁니다.
단계 7.3.5
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 7.3.6
의 왼쪽으로 이동하기
단계 7.4
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.4.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 7.4.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 7.4.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 8
다항식은 선형 인자의 집합으로 표현할 수 있습니다.
단계 9
다항식 의 근(해)입니다.
단계 10