기초 미적분 예제

유리근 판정법을 이용하여 근/영점 구하기 x^3-6x^2+12x-8
단계 1
다항함수의 계수가 정수인 경우, 가 상수의 약수이며 가 최고차항 계수의 인수일 때 모든 유리근은 의 형태를 가집니다.
단계 2
의 모든 조합을 찾습니다. 이들은 다항 함수의 해가 될 수 있습니다.
단계 3
다항식에 해로 생각되는 값을 대입하여 해를 알아냅니다. 계산값이 라면 대입값이 해임을 의미합니다.
단계 4
식을 간단히 합니다. 이 경우 식이 이므로 은 다항식의 근입니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.1
승 합니다.
단계 4.1.2
승 합니다.
단계 4.1.3
을 곱합니다.
단계 4.1.4
을 곱합니다.
단계 4.2
더하고 빼서 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
에서 을 뺍니다.
단계 4.2.2
에 더합니다.
단계 4.2.3
에서 을 뺍니다.
단계 5
는 이미 구한 해이므로 다항식을 으로 나누어 몫 다항식을 알아냅니다. 이 다항식은 다른 해를 찾기 위해 이용됩니다.
단계 6
그 다음, 나머지 다항식의 근을 구합니다. 다항식의 차수는 만큼 줄었습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
제수와 피제수에 해당하는 숫자를 나눗셈 형태로 나타냅니다.
  
단계 6.2
피제수 의 첫 번째 수는 결과 부분(가로 선 아래)에 첫 번째로 적습니다.
  
단계 6.3
제수 에 결과의 가장 최근 값 을 곱하여 나온 값 을 피제수 의 다음 항 아래에 적습니다.
  
단계 6.4
곱셈값과 피제수의 숫자의 곱을 더하고 그 결과를 결과 열의 다음 위치에 적습니다.
  
단계 6.5
제수 에 결과의 가장 최근 값 을 곱하여 나온 값 을 피제수 의 다음 항 아래에 적습니다.
  
단계 6.6
곱셈값과 피제수의 숫자의 곱을 더하고 그 결과를 결과 열의 다음 위치에 적습니다.
  
단계 6.7
제수 에 결과의 가장 최근 값 을 곱하여 나온 값 을 피제수 의 다음 항 아래에 적습니다.
 
단계 6.8
곱셈값과 피제수의 숫자의 곱을 더하고 그 결과를 결과 열의 다음 위치에 적습니다.
 
단계 6.9
마지막 수를 제외한 모든 수는 몫 다항식의 계수가 됩니다. 결과열의 마지막 값이 나머지입니다.
단계 6.10
몫 다항식을 간단히 합니다.
단계 7
완전제곱 법칙을 이용하여 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
로 바꿔 씁니다.
단계 7.2
중간 항이 첫 번째 항 및 세 번째 항에서 제곱되는 수를 곱한 값의 두 배인지 확인합니다.
단계 7.3
다항식을 다시 씁니다.
단계 7.4
이고 일 때 완전제곱 삼항식 법칙 을 이용하여 인수분해합니다.
단계 8
방정식의 좌변을 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
유리근 정리르 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1.1
다항함수의 계수가 정수인 경우, 가 상수의 약수이며 가 최고차항 계수의 인수일 때 모든 유리근은 의 형태를 가집니다.
단계 8.1.2
의 모든 조합을 찾습니다. 이들은 다항 함수의 해가 될 수 있습니다.
단계 8.1.3
을 대입하고 식을 간단히 합니다. 이 경우 식이 이므로 은 다항식의 근입니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1.3.1
을 다항식에 대입합니다.
단계 8.1.3.2
승 합니다.
단계 8.1.3.3
승 합니다.
단계 8.1.3.4
을 곱합니다.
단계 8.1.3.5
에서 을 뺍니다.
단계 8.1.3.6
을 곱합니다.
단계 8.1.3.7
에 더합니다.
단계 8.1.3.8
에서 을 뺍니다.
단계 8.1.4
는 알고 있는 해이므로 다항식을 으로 나누어 몫 다항식을 구합니다. 이 다항식은 나머지 해를 찾기 위해 이용됩니다.
단계 8.1.5
로 나눕니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1.5.1
다항식을 나눗셈 형태로 적습니다. 각 지수에 대하여 항이 없는 경우 값이 인 항을 삽입합니다.
--+-
단계 8.1.5.2
피제수 의 고차항을 제수 의 고차항으로 나눕니다.
--+-
단계 8.1.5.3
새로운 몫 값에 제수를 곱합니다.
--+-
+-
단계 8.1.5.4
식을 피제수에서 빼야 하므로 의 모든 부호를 바꿉니다.
--+-
-+
단계 8.1.5.5
부호를 바꾼 뒤, 곱한 다항식의 마지막 피제수를 더해 새로운 피제수를 구합니다.
--+-
-+
-
단계 8.1.5.6
원래 피제수의 다음 항을 아래로 내려 현재 피제수로 보냅니다.
--+-
-+
-+
단계 8.1.5.7
피제수 의 고차항을 제수 의 고차항으로 나눕니다.
-
--+-
-+
-+
단계 8.1.5.8
새로운 몫 값에 제수를 곱합니다.
-
--+-
-+
-+
-+
단계 8.1.5.9
식을 피제수에서 빼야 하므로 의 모든 부호를 바꿉니다.
-
--+-
-+
-+
+-
단계 8.1.5.10
부호를 바꾼 뒤, 곱한 다항식의 마지막 피제수를 더해 새로운 피제수를 구합니다.
-
--+-
-+
-+
+-
+
단계 8.1.5.11
원래 피제수의 다음 항을 아래로 내려 현재 피제수로 보냅니다.
-
--+-
-+
-+
+-
+-
단계 8.1.5.12
피제수 의 고차항을 제수 의 고차항으로 나눕니다.
-+
--+-
-+
-+
+-
+-
단계 8.1.5.13
새로운 몫 값에 제수를 곱합니다.
-+
--+-
-+
-+
+-
+-
+-
단계 8.1.5.14
식을 피제수에서 빼야 하므로 의 모든 부호를 바꿉니다.
-+
--+-
-+
-+
+-
+-
-+
단계 8.1.5.15
부호를 바꾼 뒤, 곱한 다항식의 마지막 피제수를 더해 새로운 피제수를 구합니다.
-+
--+-
-+
-+
+-
+-
-+
단계 8.1.5.16
나머지가 이므로, 몫이 최종해입니다.
단계 8.1.6
을 인수의 집합으로 표현합니다.
단계 8.2
완전제곱 법칙을 이용하여 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1
로 바꿔 씁니다.
단계 8.2.2
중간 항이 첫 번째 항 및 세 번째 항에서 제곱되는 수를 곱한 값의 두 배인지 확인합니다.
단계 8.2.3
다항식을 다시 씁니다.
단계 8.2.4
이고 일 때 완전제곱 삼항식 법칙 을 이용하여 인수분해합니다.
단계 8.3
유사한 인수끼리 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.3.1
승 합니다.
단계 8.3.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 8.3.3
에 더합니다.
단계 9
와 같다고 둡니다.
단계 10
방정식의 양변에 를 더합니다.
단계 11