기초 미적분 예제

근(영점) 구하기 f(x) = square root of 4x-x^2
단계 1
와 같다고 둡니다.
단계 2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
방정식의 좌변의 근호를 없애기 위해 방정식 양변을 제곱합니다.
단계 2.2
방정식의 각 변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 2.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 2.2.2.1.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1.1.2.1
공약수로 약분합니다.
단계 2.2.2.1.1.2.2
수식을 다시 씁니다.
단계 2.2.2.1.2
간단히 합니다.
단계 2.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.3.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 2.3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
방정식의 좌변을 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1.1
로 정의합니다. 식에 나타나는 모든 로 바꿉니다.
단계 2.3.1.2
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1.2.1
에서 를 인수분해합니다.
단계 2.3.1.2.2
에서 를 인수분해합니다.
단계 2.3.1.2.3
에서 를 인수분해합니다.
단계 2.3.1.3
를 모두 로 바꿉니다.
단계 2.3.2
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 2.3.3
와 같다고 둡니다.
단계 2.3.4
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.4.1
와 같다고 둡니다.
단계 2.3.4.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.4.2.1
방정식의 양변에서 를 뺍니다.
단계 2.3.4.2.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.4.2.2.1
의 각 항을 로 나눕니다.
단계 2.3.4.2.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.4.2.2.2.1
두 음수를 나누면 양수가 나옵니다.
단계 2.3.4.2.2.2.2
로 나눕니다.
단계 2.3.4.2.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.4.2.2.3.1
로 나눕니다.
단계 2.3.5
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 3