기초 미적분 예제

역함수 구하기 f(x)=(x^2+2x+1)/(x^2+x-2)
단계 1
을(를) 방정식으로 씁니다.
단계 2
변수를 서로 바꿉니다.
단계 3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
방정식에 을 곱합니다.
단계 3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
분배 법칙을 적용합니다.
단계 3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1
완전제곱 법칙을 이용하여 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1.1
로 바꿔 씁니다.
단계 3.3.1.1.2
중간 항이 첫 번째 항 및 세 번째 항에서 제곱되는 수를 곱한 값의 두 배인지 확인합니다.
단계 3.3.1.1.3
다항식을 다시 씁니다.
단계 3.3.1.1.4
이고 일 때 완전제곱 삼항식 법칙 을 이용하여 인수분해합니다.
단계 3.3.1.2
AC 방법을 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.2.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 3.3.1.2.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 3.3.1.3
을 곱합니다.
단계 3.3.1.4
AC 방법을 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.4.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 3.3.1.4.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 3.3.1.5
공약수를 소거하여 수식을 간단히 정리합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.5.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.5.1.1
공약수로 약분합니다.
단계 3.3.1.5.1.2
수식을 다시 씁니다.
단계 3.3.1.5.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.5.2.1
공약수로 약분합니다.
단계 3.3.1.5.2.2
로 나눕니다.
단계 3.3.1.5.3
로 바꿔 씁니다.
단계 3.3.1.6
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.6.1
분배 법칙을 적용합니다.
단계 3.3.1.6.2
분배 법칙을 적용합니다.
단계 3.3.1.6.3
분배 법칙을 적용합니다.
단계 3.3.1.7
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.7.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.7.1.1
을 곱합니다.
단계 3.3.1.7.1.2
을 곱합니다.
단계 3.3.1.7.1.3
을 곱합니다.
단계 3.3.1.7.1.4
을 곱합니다.
단계 3.3.1.7.2
에 더합니다.
단계 3.4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.1
을 포함하는 모든 항을 방정식의 좌변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.1.1
방정식의 양변에서 를 뺍니다.
단계 3.4.1.2
방정식의 양변에서 를 뺍니다.
단계 3.4.2
방정식의 양변에서 를 뺍니다.
단계 3.4.3
근의 공식을 이용해 방정식의 해를 구합니다.
단계 3.4.4
이차함수의 근의 공식에 , , 을 대입하여 를 구합니다.
단계 3.4.5
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.5.1
분배 법칙을 적용합니다.
단계 3.4.5.2
을 곱합니다.
단계 3.4.5.3
로 바꿔 씁니다.
단계 3.4.5.4
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.5.4.1
분배 법칙을 적용합니다.
단계 3.4.5.4.2
분배 법칙을 적용합니다.
단계 3.4.5.4.3
분배 법칙을 적용합니다.
단계 3.4.5.5
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.5.5.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.5.5.1.1
을 곱합니다.
단계 3.4.5.5.1.2
의 왼쪽으로 이동하기
단계 3.4.5.5.1.3
을 곱합니다.
단계 3.4.5.5.2
에서 을 뺍니다.
단계 3.4.5.6
분배 법칙을 적용합니다.
단계 3.4.5.7
을 곱합니다.
단계 3.4.5.8
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.5.8.1
분배 법칙을 적용합니다.
단계 3.4.5.8.2
분배 법칙을 적용합니다.
단계 3.4.5.8.3
분배 법칙을 적용합니다.
단계 3.4.5.9
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.5.9.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.5.9.1.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 3.4.5.9.1.2
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.5.9.1.2.1
를 옮깁니다.
단계 3.4.5.9.1.2.2
을 곱합니다.
단계 3.4.5.9.1.3
을 곱합니다.
단계 3.4.5.9.1.4
을 곱합니다.
단계 3.4.5.9.1.5
을 곱합니다.
단계 3.4.5.9.1.6
을 곱합니다.
단계 3.4.5.9.2
에서 을 뺍니다.
단계 3.4.5.10
에 더합니다.
단계 3.4.5.11
에서 을 뺍니다.
단계 3.4.5.12
에서 을 뺍니다.
단계 3.4.5.13
에 더합니다.
단계 3.4.5.14
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.5.14.1
에서 를 인수분해합니다.
단계 3.4.5.14.2
에서 를 인수분해합니다.
단계 3.4.5.14.3
에서 를 인수분해합니다.
단계 3.4.6
수식을 간단히 하여 부분에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.6.1
로 바꿉니다.
단계 3.4.6.2
에서 를 인수분해합니다.
단계 3.4.6.3
로 바꿔 씁니다.
단계 3.4.6.4
에서 를 인수분해합니다.
단계 3.4.6.5
에서 를 인수분해합니다.
단계 3.4.6.6
에서 를 인수분해합니다.
단계 3.4.6.7
로 바꿔 씁니다.
단계 3.4.6.8
마이너스 부호를 분수 앞으로 보냅니다.
단계 3.4.7
수식을 간단히 하여 부분에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.7.1
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.7.1.1
분배 법칙을 적용합니다.
단계 3.4.7.1.2
을 곱합니다.
단계 3.4.7.1.3
로 바꿔 씁니다.
단계 3.4.7.1.4
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.7.1.4.1
분배 법칙을 적용합니다.
단계 3.4.7.1.4.2
분배 법칙을 적용합니다.
단계 3.4.7.1.4.3
분배 법칙을 적용합니다.
단계 3.4.7.1.5
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.7.1.5.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.7.1.5.1.1
을 곱합니다.
단계 3.4.7.1.5.1.2
의 왼쪽으로 이동하기
단계 3.4.7.1.5.1.3
을 곱합니다.
단계 3.4.7.1.5.2
에서 을 뺍니다.
단계 3.4.7.1.6
분배 법칙을 적용합니다.
단계 3.4.7.1.7
을 곱합니다.
단계 3.4.7.1.8
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.7.1.8.1
분배 법칙을 적용합니다.
단계 3.4.7.1.8.2
분배 법칙을 적용합니다.
단계 3.4.7.1.8.3
분배 법칙을 적용합니다.
단계 3.4.7.1.9
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.7.1.9.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.7.1.9.1.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 3.4.7.1.9.1.2
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.7.1.9.1.2.1
를 옮깁니다.
단계 3.4.7.1.9.1.2.2
을 곱합니다.
단계 3.4.7.1.9.1.3
을 곱합니다.
단계 3.4.7.1.9.1.4
을 곱합니다.
단계 3.4.7.1.9.1.5
을 곱합니다.
단계 3.4.7.1.9.1.6
을 곱합니다.
단계 3.4.7.1.9.2
에서 을 뺍니다.
단계 3.4.7.1.10
에 더합니다.
단계 3.4.7.1.11
에서 을 뺍니다.
단계 3.4.7.1.12
에서 을 뺍니다.
단계 3.4.7.1.13
에 더합니다.
단계 3.4.7.1.14
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.7.1.14.1
에서 를 인수분해합니다.
단계 3.4.7.1.14.2
에서 를 인수분해합니다.
단계 3.4.7.1.14.3
에서 를 인수분해합니다.
단계 3.4.7.2
로 바꿉니다.
단계 3.4.7.3
에서 를 인수분해합니다.
단계 3.4.7.4
로 바꿔 씁니다.
단계 3.4.7.5
에서 를 인수분해합니다.
단계 3.4.7.6
에서 를 인수분해합니다.
단계 3.4.7.7
에서 를 인수분해합니다.
단계 3.4.7.8
로 바꿔 씁니다.
단계 3.4.7.9
마이너스 부호를 분수 앞으로 보냅니다.
단계 3.4.8
두 해를 모두 조합하면 최종 답이 됩니다.
단계 4
Replace with to show the final answer.
단계 5
증명하려면 의 역함수인지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
역함수의 정의역은 원래 함수의 치역이고 그 반대도 마찬가지입니다. 의 정의역과 치역을 구하여 비교합니다.
단계 5.2
의 범위를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.1
치역은 모든 유효한 값의 집합입니다. 그래프를 이용하여 치역을 찾습니다.
구간 표기:
단계 5.3
의 정의역을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1
식이 정의된 지점을 알아내려면 의 피개법수를 보다 크거나 같게 설정해야 합니다.
단계 5.3.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.1
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 5.3.2.2
와 같다고 둡니다.
단계 5.3.2.3
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.3.1
와 같다고 둡니다.
단계 5.3.2.3.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.3.2.1
방정식의 양변에 를 더합니다.
단계 5.3.2.3.2.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.3.2.2.1
의 각 항을 로 나눕니다.
단계 5.3.2.3.2.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.3.2.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.3.2.2.2.1.1
공약수로 약분합니다.
단계 5.3.2.3.2.2.2.1.2
로 나눕니다.
단계 5.3.2.4
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 5.3.2.5
각 근을 사용하여 시험 구간을 만듭니다.
단계 5.3.2.6
각 구간에서 실험값을 선택하고 이를 원래의 부등식에 대입하여 어느 구간이 부등식을 만족하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.6.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.6.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 5.3.2.6.1.2
원래 부등식에서 로 치환합니다.
단계 5.3.2.6.1.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
True
True
단계 5.3.2.6.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.6.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 5.3.2.6.2.2
원래 부등식에서 로 치환합니다.
단계 5.3.2.6.2.3
좌변 이 우변 보다 작으므로 주어진 명제는 거짓입니다.
False
False
단계 5.3.2.6.3
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.6.3.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 5.3.2.6.3.2
원래 부등식에서 로 치환합니다.
단계 5.3.2.6.3.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
True
True
단계 5.3.2.6.4
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
거짓
거짓
단계 5.3.2.7
해는 모두 참인 구간으로 이루어져 있습니다.
또는
또는
단계 5.3.3
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 5.3.4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.4.1
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.4.1.1
의 각 항을 로 나눕니다.
단계 5.3.4.1.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.4.1.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.4.1.2.1.1
공약수로 약분합니다.
단계 5.3.4.1.2.1.2
로 나눕니다.
단계 5.3.4.1.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.4.1.3.1
로 나눕니다.
단계 5.3.4.2
방정식의 양변에 를 더합니다.
단계 5.3.5
정의역은 수식을 정의하는 모든 유효한 값입니다.
단계 5.4
의 정의역이 의 치역이 아니면의 역함수가 아닙니다.
역함수가 없음
역함수가 없음
단계 6