기초 미적분 예제

정의역 구하기 h(x)=( 4-x)/((x+1)(x^2+1)) 의 제곱근
단계 1
식이 정의된 지점을 알아내려면 의 피개법수를 보다 크거나 같게 설정해야 합니다.
단계 2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
부등식의 양변에서 를 뺍니다.
단계 2.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
의 각 항을 로 나눕니다. 부등식의 양변에 음수를 곱하거나 나눌 때에는 부등호의 방향을 바꿉니다.
단계 2.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1
두 음수를 나누면 양수가 나옵니다.
단계 2.2.2.2
로 나눕니다.
단계 2.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.3.1
로 나눕니다.
단계 3
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 4.2
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
와 같다고 둡니다.
단계 4.2.2
방정식의 양변에서 를 뺍니다.
단계 4.3
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
와 같다고 둡니다.
단계 4.3.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.1
방정식의 양변에서 를 뺍니다.
단계 4.3.2.2
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 4.3.2.3
로 바꿔 씁니다.
단계 4.3.2.4
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.4.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 4.3.2.4.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 4.3.2.4.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 4.4
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 5
정의역은 수식을 정의하는 모든 유효한 값입니다.
구간 표기:
조건제시법:
단계 6