기초 미적분 예제

상계 및 하계 구하기 f(x)=2x-3
단계 1
의 모든 조합을 찾습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
다항함수의 계수가 정수인 경우, 가 상수의 약수이며 가 최고차항 계수의 인수일 때 모든 유리근은 의 형태를 가집니다.
단계 1.2
의 모든 조합을 찾습니다. 이들은 다항 함수의 해가 될 수 있습니다.
단계 2
일 때 에 조립제법을 적용합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
제수와 피제수에 해당하는 숫자를 나눗셈 형태로 나타냅니다.
  
단계 2.2
피제수 의 첫 번째 수는 결과 부분(가로 선 아래)에 첫 번째로 적습니다.
  
단계 2.3
제수 에 결과의 가장 최근 값 을 곱하여 나온 값 을 피제수 의 다음 항 아래에 적습니다.
 
단계 2.4
곱셈값과 피제수의 숫자의 곱을 더하고 그 결과를 결과 열의 다음 위치에 적습니다.
 
단계 2.5
마지막 수를 제외한 모든 수는 몫 다항식의 계수가 됩니다. 결과열의 마지막 값이 나머지입니다.
단계 2.6
몫 다항식을 간단히 합니다.
단계 3
이고 조립제법의 맨 아래 행의 부호가 번갈아 바뀌므로, 이 함수의 실근에 대한 하계입니다.
하한계:
단계 4
일 때 에 조립제법을 적용합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
제수와 피제수에 해당하는 숫자를 나눗셈 형태로 나타냅니다.
  
단계 4.2
피제수 의 첫 번째 수는 결과 부분(가로 선 아래)에 첫 번째로 적습니다.
  
단계 4.3
제수 에 결과의 가장 최근 값 을 곱하여 나온 값 을 피제수 의 다음 항 아래에 적습니다.
 
단계 4.4
곱셈값과 피제수의 숫자의 곱을 더하고 그 결과를 결과 열의 다음 위치에 적습니다.
 
단계 4.5
마지막 수를 제외한 모든 수는 몫 다항식의 계수가 됩니다. 결과열의 마지막 값이 나머지입니다.
단계 4.6
몫 다항식을 간단히 합니다.
단계 5
이고 조립제법의 맨 아래 행의 부호가 번갈아 바뀌므로, 이 함수의 실근에 대한 하계입니다.
하한계:
단계 6
일 때 에 조립제법을 적용합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
제수와 피제수에 해당하는 숫자를 나눗셈 형태로 나타냅니다.
  
단계 6.2
피제수 의 첫 번째 수는 결과 부분(가로 선 아래)에 첫 번째로 적습니다.
  
단계 6.3
제수 에 결과의 가장 최근 값 을 곱하여 나온 값 을 피제수 의 다음 항 아래에 적습니다.
 
단계 6.4
곱셈값과 피제수의 숫자의 곱을 더하고 그 결과를 결과 열의 다음 위치에 적습니다.
 
단계 6.5
마지막 수를 제외한 모든 수는 몫 다항식의 계수가 됩니다. 결과열의 마지막 값이 나머지입니다.
단계 7
이고 조립제법의 맨 아래 행의 부호가 모두 +이므로, 이 함수의 실근에 대한 하계입니다.
상계:
단계 8
일 때 에 조립제법을 적용합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
제수와 피제수에 해당하는 숫자를 나눗셈 형태로 나타냅니다.
  
단계 8.2
피제수 의 첫 번째 수는 결과 부분(가로 선 아래)에 첫 번째로 적습니다.
  
단계 8.3
제수 에 결과의 가장 최근 값 을 곱하여 나온 값 을 피제수 의 다음 항 아래에 적습니다.
 
단계 8.4
곱셈값과 피제수의 숫자의 곱을 더하고 그 결과를 결과 열의 다음 위치에 적습니다.
 
단계 8.5
마지막 수를 제외한 모든 수는 몫 다항식의 계수가 됩니다. 결과열의 마지막 값이 나머지입니다.
단계 8.6
몫 다항식을 간단히 합니다.
단계 9
이고 조립제법의 맨 아래 행의 부호가 번갈아 바뀌므로, 이 함수의 실근에 대한 하계입니다.
하한계:
단계 10
일 때 에 조립제법을 적용합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1
제수와 피제수에 해당하는 숫자를 나눗셈 형태로 나타냅니다.
  
단계 10.2
피제수 의 첫 번째 수는 결과 부분(가로 선 아래)에 첫 번째로 적습니다.
  
단계 10.3
제수 에 결과의 가장 최근 값 을 곱하여 나온 값 을 피제수 의 다음 항 아래에 적습니다.
 
단계 10.4
곱셈값과 피제수의 숫자의 곱을 더하고 그 결과를 결과 열의 다음 위치에 적습니다.
 
단계 10.5
마지막 수를 제외한 모든 수는 몫 다항식의 계수가 됩니다. 결과열의 마지막 값이 나머지입니다.
단계 11
이고 조립제법의 맨 아래 행의 부호가 모두 +이므로, 이 함수의 실근에 대한 하계입니다.
상계:
단계 12
일 때 에 조립제법을 적용합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 12.1
제수와 피제수에 해당하는 숫자를 나눗셈 형태로 나타냅니다.
  
단계 12.2
피제수 의 첫 번째 수는 결과 부분(가로 선 아래)에 첫 번째로 적습니다.
  
단계 12.3
제수 에 결과의 가장 최근 값 을 곱하여 나온 값 을 피제수 의 다음 항 아래에 적습니다.
 
단계 12.4
곱셈값과 피제수의 숫자의 곱을 더하고 그 결과를 결과 열의 다음 위치에 적습니다.
 
단계 12.5
마지막 수를 제외한 모든 수는 몫 다항식의 계수가 됩니다. 결과열의 마지막 값이 나머지입니다.
단계 12.6
몫 다항식을 간단히 합니다.
단계 13
이고 조립제법의 맨 아래 행의 부호가 번갈아 바뀌므로, 이 함수의 실근에 대한 하계입니다.
하한계:
단계 14
상계와 하계를 구합니다.
상계:
하한계:
단계 15