기초 미적분 예제

Résoudre pour x 자연로그 x+2- 자연로그 x=2
단계 1
로그의 나눗셈의 성질 을 이용합니다.
단계 2
로그의 정의를 이용하여 을 지수 형태로 바꿔 씁니다. 만약 가 양의 실수이고 이면 와 같습니다.
단계 3
교차 곱하기를 이용하여 분수를 없앱니다.
단계 4
을 곱합니다.
단계 5
방정식의 양변에서 를 뺍니다.
단계 6
방정식의 양변에서 를 뺍니다.
단계 7
방정식의 좌변을 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1.1
승 합니다.
단계 7.1.2
에서 를 인수분해합니다.
단계 7.1.3
에서 를 인수분해합니다.
단계 7.1.4
에서 를 인수분해합니다.
단계 7.2
로 바꿔 씁니다.
단계 7.3
인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.3.1
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 7.3.2
불필요한 괄호를 제거합니다.
단계 8
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
의 각 항을 로 나눕니다.
단계 8.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1.1
로 바꿔 씁니다.
단계 8.2.1.2
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 8.2.2
공약수를 소거하여 수식을 간단히 정리합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.2.1.1
공약수로 약분합니다.
단계 8.2.2.1.2
수식을 다시 씁니다.
단계 8.2.2.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.2.2.1
공약수로 약분합니다.
단계 8.2.2.2.2
로 나눕니다.
단계 8.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.3.1
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.3.1.1
로 바꿔 씁니다.
단계 8.3.1.2
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 8.3.2
마이너스 부호를 분수 앞으로 보냅니다.
단계 9
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태: