기초 미적분 예제

Résoudre pour x x^3-9=2 의 제곱근의 로그
단계 1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 2
로그의 정의를 이용하여 를 지수 형태로 다시 씁니다. 만약 가 양의 실수와 이면, 와 같습니다.
단계 3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
로 방정식을 다시 씁니다.
단계 3.2
좌변의 분수 지수를 없애기 위해 방정식의 각 변을 승합니다.
단계 3.3
지수를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 3.3.1.1.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1.1.2.1
공약수로 약분합니다.
단계 3.3.1.1.1.2.2
수식을 다시 씁니다.
단계 3.3.1.1.2
간단히 합니다.
단계 3.3.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 3.3.2.1.1.2
을 곱합니다.
단계 3.3.2.1.2
승 합니다.
단계 3.4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.1
를 포함하지 않은 모든 항을 방정식의 우변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.1.1
방정식의 양변에 를 더합니다.
단계 3.4.1.2
에 더합니다.
단계 3.4.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
단계 4
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태: