문제를 입력하십시오...
기초 미적분 예제
단계 1
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 2
단계 2.1
를 와 같다고 둡니다.
단계 2.2
을 에 대해 풉니다.
단계 2.2.1
방정식의 양변에서 를 뺍니다.
단계 2.2.2
코탄젠트 안의 를 꺼내기 위해 방정식 양변에 코탄젠트의 역을 취합니다.
단계 2.2.3
우변을 간단히 합니다.
단계 2.2.3.1
의 정확한 값은 입니다.
단계 2.2.4
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
단계 2.2.5
두 번째 해를 구하기 위하여 수식을 간단히 합니다.
단계 2.2.5.1
에 를 더합니다.
단계 2.2.5.2
결과 각인 은 양의 값을 가지며 과 양변을 공유하는 관계입니다
단계 2.2.6
주기를 구합니다.
단계 2.2.6.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 2.2.6.2
주기 공식에서 에 을 대입합니다.
단계 2.2.6.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 과 사이의 거리는 입니다.
단계 2.2.6.4
을 로 나눕니다.
단계 2.2.7
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
임의의 정수 에 대해
단계 3
단계 3.1
를 와 같다고 둡니다.
단계 3.2
을 에 대해 풉니다.
단계 3.2.1
방정식의 양변에서 를 뺍니다.
단계 3.2.2
코시컨트 안의 를 꺼내기 위해 방정식 양변에 코시컨트의 역을 취합니다.
단계 3.2.3
우변을 간단히 합니다.
단계 3.2.3.1
의 정확한 값은 입니다.
단계 3.2.4
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
단계 3.2.5
두 번째 해를 구하기 위하여 수식을 간단히 합니다.
단계 3.2.5.1
에서 을 뺍니다.
단계 3.2.5.2
결과 각인 은 양의 값으로 보다 작으며 과 양변을 공유하는 관계입니다.
단계 3.2.6
주기를 구합니다.
단계 3.2.6.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 3.2.6.2
주기 공식에서 에 을 대입합니다.
단계 3.2.6.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 과 사이의 거리는 입니다.
단계 3.2.6.4
을 로 나눕니다.
단계 3.2.7
모든 음의 각에 를 더하여 양의 각을 얻습니다.
단계 3.2.7.1
에 를 더하여 양의 각도를 구합니다.
단계 3.2.7.2
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 3.2.7.3
분수를 통분합니다.
단계 3.2.7.3.1
와 을 묶습니다.
단계 3.2.7.3.2
공통분모를 가진 분자끼리 묶습니다.
단계 3.2.7.4
분자를 간단히 합니다.
단계 3.2.7.4.1
에 을 곱합니다.
단계 3.2.7.4.2
에서 을 뺍니다.
단계 3.2.7.5
새 각을 나열합니다.
단계 3.2.8
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
임의의 정수 에 대해
단계 4
을 참으로 만드는 모든 값이 최종 해가 됩니다.
임의의 정수 에 대해
단계 5
, 를 에 통합합니다.
임의의 정수 에 대해