기초 미적분 예제

Résoudre pour ? 2sin(x)^2=3(1-cos(-x))
단계 1
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
은(는) 우함수이므로 을(를) (으)로 다시 씁니다.
단계 1.1.2
분배 법칙을 적용합니다.
단계 1.1.3
곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.3.1
을 곱합니다.
단계 1.1.3.2
을 곱합니다.
단계 2
모든 수식을 방정식의 좌변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
방정식의 양변에서 를 뺍니다.
단계 2.2
방정식의 양변에 를 더합니다.
단계 3
항등식 를 사용하여 로 바꿉니다.
단계 4
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
분배 법칙을 적용합니다.
단계 4.2
을 곱합니다.
단계 4.3
을 곱합니다.
단계 5
에서 을 뺍니다.
단계 6
다항식을 다시 정렬합니다.
단계 7
를 대입합니다.
단계 8
방정식의 좌변을 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1.1
에서 를 인수분해합니다.
단계 8.1.2
에서 를 인수분해합니다.
단계 8.1.3
로 바꿔 씁니다.
단계 8.1.4
에서 를 인수분해합니다.
단계 8.1.5
에서 를 인수분해합니다.
단계 8.2
인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1
공통인수를 이용하여 인수분해를 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1.1
형태의 다항식에 대해 곱이 이고 합이 인 두 항의 합으로 중간항을 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1.1.1
에서 를 인수분해합니다.
단계 8.2.1.1.2
+ 로 다시 씁니다.
단계 8.2.1.1.3
분배 법칙을 적용합니다.
단계 8.2.1.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1.2.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 8.2.1.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 8.2.1.3
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 8.2.2
불필요한 괄호를 제거합니다.
단계 9
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 10
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1
와 같다고 둡니다.
단계 10.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.2.1
방정식의 양변에 를 더합니다.
단계 10.2.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.2.2.1
의 각 항을 로 나눕니다.
단계 10.2.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.2.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.2.2.2.1.1
공약수로 약분합니다.
단계 10.2.2.2.1.2
로 나눕니다.
단계 11
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.1
와 같다고 둡니다.
단계 11.2
방정식의 양변에 를 더합니다.
단계 12
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 13
를 대입합니다.
단계 14
각 식에 대하여 를 구합니다.
단계 15
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 15.1
코사인 안의 를 꺼내기 위해 방정식 양변에 코사인의 역을 취합니다.
단계 15.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 15.2.1
의 정확한 값은 입니다.
단계 15.3
코사인 함수는 제1사분면과 제4사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제4사분면에 있는 해를 구합니다.
단계 15.4
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 15.4.1
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 15.4.2
분수를 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 15.4.2.1
을 묶습니다.
단계 15.4.2.2
공통분모를 가진 분자끼리 묶습니다.
단계 15.4.3
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 15.4.3.1
을 곱합니다.
단계 15.4.3.2
에서 을 뺍니다.
단계 15.5
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 15.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 15.5.2
주기 공식에서 을 대입합니다.
단계 15.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 15.5.4
로 나눕니다.
단계 15.6
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 16
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 16.1
코사인 안의 를 꺼내기 위해 방정식 양변에 코사인의 역을 취합니다.
단계 16.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 16.2.1
의 정확한 값은 입니다.
단계 16.3
코사인 함수는 제1사분면과 제4사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제4사분면에 있는 해를 구합니다.
단계 16.4
에서 을 뺍니다.
단계 16.5
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 16.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 16.5.2
주기 공식에서 을 대입합니다.
단계 16.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 16.5.4
로 나눕니다.
단계 16.6
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 17
모든 해를 나열합니다.
임의의 정수 에 대해
단계 18
, 에 통합합니다.
임의의 정수 에 대해