기초 미적분 예제

Résoudre pour x 로그 x+4- 로그 x = 로그 x+2
단계 1
로그의 나눗셈의 성질 을 이용합니다.
단계 2
방정식의 등호가 성립하려면 방정식의 두 변에 있는 로그의 진수가 동일해야 합니다.
단계 3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
방정식 항의 최소공분모를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1
여러 값의 최소공분모를 구하는 것은 해당 값들의 분모의 최소공배수를 구하는 것과 같습니다.
단계 3.1.2
1과 식의 최소공배수는 그 식 자체입니다.
단계 3.2
의 각 항에 을 곱하고 분수를 소거합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
의 각 항에 을 곱합니다.
단계 3.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1.1
공약수로 약분합니다.
단계 3.2.2.1.2
수식을 다시 씁니다.
단계 3.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.3.1
을 곱합니다.
단계 3.3
식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
가 식의 우변에 있으므로, 두 변을 바꿔 식의 좌변으로 옮깁니다.
단계 3.3.2
을 포함하는 모든 항을 방정식의 좌변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1
방정식의 양변에서 를 뺍니다.
단계 3.3.2.2
에서 을 뺍니다.
단계 3.3.3
방정식의 양변에서 를 뺍니다.
단계 3.3.4
근의 공식을 이용해 방정식의 해를 구합니다.
단계 3.3.5
이차함수의 근의 공식에 , , 을 대입하여 를 구합니다.
단계 3.3.6
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.6.1
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.6.1.1
1의 모든 거듭제곱은 1입니다.
단계 3.3.6.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.6.1.2.1
을 곱합니다.
단계 3.3.6.1.2.2
을 곱합니다.
단계 3.3.6.1.3
에 더합니다.
단계 3.3.6.2
을 곱합니다.
단계 3.3.7
두 해를 모두 조합하면 최종 답이 됩니다.
단계 4
이 참이 되지 않게 하는 해를 버립니다.
단계 5
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태: