문제를 입력하십시오...
기초 미적분 예제
단계 1
단계 1.1
의 정확한 값은 입니다.
단계 1.1.1
여섯 개의 삼각함수값이 알려진 두 각으로 를 나눕니다.
단계 1.1.2
삼각함수의 합의 공식을 이용합니다.
단계 1.1.3
의 정확한 값은 입니다.
단계 1.1.4
의 정확한 값은 입니다.
단계 1.1.5
의 정확한 값은 입니다.
단계 1.1.6
의 정확한 값은 입니다.
단계 1.1.7
을 간단히 합니다.
단계 1.1.7.1
각 항을 간단히 합니다.
단계 1.1.7.1.1
을 곱합니다.
단계 1.1.7.1.1.1
에 을 곱합니다.
단계 1.1.7.1.1.2
에 을 곱합니다.
단계 1.1.7.1.2
을 곱합니다.
단계 1.1.7.1.2.1
에 을 곱합니다.
단계 1.1.7.1.2.2
근호의 곱의 미분 법칙을 사용하여 묶습니다.
단계 1.1.7.1.2.3
에 을 곱합니다.
단계 1.1.7.1.2.4
에 을 곱합니다.
단계 1.1.7.2
공통분모를 가진 분자끼리 묶습니다.
단계 1.2
의 정확한 값은 입니다.
단계 1.2.1
여섯 개의 삼각함수값이 알려진 두 각으로 를 나눕니다.
단계 1.2.2
마이너스 부호를 분리합니다.
단계 1.2.3
삼각함수의 차의 공식을 이용합니다.
단계 1.2.4
의 정확한 값은 입니다.
단계 1.2.5
의 정확한 값은 입니다.
단계 1.2.6
의 정확한 값은 입니다.
단계 1.2.7
의 정확한 값은 입니다.
단계 1.2.8
을 간단히 합니다.
단계 1.2.8.1
각 항을 간단히 합니다.
단계 1.2.8.1.1
을 곱합니다.
단계 1.2.8.1.1.1
에 을 곱합니다.
단계 1.2.8.1.1.2
근호의 곱의 미분 법칙을 사용하여 묶습니다.
단계 1.2.8.1.1.3
에 을 곱합니다.
단계 1.2.8.1.1.4
에 을 곱합니다.
단계 1.2.8.1.2
을 곱합니다.
단계 1.2.8.1.2.1
에 을 곱합니다.
단계 1.2.8.1.2.2
에 을 곱합니다.
단계 1.2.8.2
공통분모를 가진 분자끼리 묶습니다.
단계 2
공통분모를 가진 분자끼리 묶습니다.
단계 3
단계 3.1
분배 법칙을 적용합니다.
단계 3.2
을 곱합니다.
단계 3.2.1
에 을 곱합니다.
단계 3.2.2
에 을 곱합니다.
단계 4
단계 4.1
를 에 더합니다.
단계 4.2
에서 을 뺍니다.
단계 4.3
를 에 더합니다.
단계 4.4
및 의 공약수로 약분합니다.
단계 4.4.1
에서 를 인수분해합니다.
단계 4.4.2
공약수로 약분합니다.
단계 4.4.2.1
에서 를 인수분해합니다.
단계 4.4.2.2
공약수로 약분합니다.
단계 4.4.2.3
수식을 다시 씁니다.
단계 5
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태: