기초 미적분 예제

점근선 구하기 f(x)=(x^2-5x)/(x-5)
단계 1
가 정의되지 않는 구간을 찾습니다.
단계 2
수직점근선은 무한 불연속인 영역에서 나타납니다.
수직점근선 없음
단계 3
분자의 차수가 , 분모의 차수가 인 유리 함수 를 사용합니다.
1. 이면 x축, 이 수평점근선입니다.
2. 이면, 수평점근선은 선입니다.
3. 이면, 수평점근선이 존재하지 않습니다(사선점근선이 존재합니다).
단계 4
값을 구합니다.
단계 5
이므로, 수평점근선이 존재하지 않습니다.
수평점근선 없음
단계 6
다항식의 나눗셈을 이용하여 사선점근선을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1.1.1
에서 를 인수분해합니다.
단계 6.1.1.2
에서 를 인수분해합니다.
단계 6.1.1.3
에서 를 인수분해합니다.
단계 6.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1.2.1
공약수로 약분합니다.
단계 6.1.2.2
로 나눕니다.
단계 6.2
다항식 나눗셈의 다항식 부분이 존재하지 않으므로 사전점근선이 없습니다.
사선점근선 없음
사선점근선 없음
단계 7
모든 점근선의 집합입니다.
수직점근선 없음
수평점근선 없음
사선점근선 없음
단계 8