문제를 입력하십시오...
기초 미적분 예제
단계 1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 2
단계 2.1
의 각 항을 로 나누고 식을 간단히 합니다.
단계 2.1.1
의 각 항을 로 나눕니다.
단계 2.1.2
좌변을 간단히 합니다.
단계 2.1.2.1
의 공약수로 약분합니다.
단계 2.1.2.1.1
공약수로 약분합니다.
단계 2.1.2.1.2
수식을 다시 씁니다.
단계 2.1.2.2
의 공약수로 약분합니다.
단계 2.1.2.2.1
공약수로 약분합니다.
단계 2.1.2.2.2
을 로 나눕니다.
단계 2.1.3
우변을 간단히 합니다.
단계 2.1.3.1
및 의 공약수로 약분합니다.
단계 2.1.3.1.1
에서 를 인수분해합니다.
단계 2.1.3.1.2
공약수로 약분합니다.
단계 2.1.3.1.2.1
에서 를 인수분해합니다.
단계 2.1.3.1.2.2
공약수로 약분합니다.
단계 2.1.3.1.2.3
수식을 다시 씁니다.
단계 2.1.3.2
을 로 나눕니다.
단계 2.2
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 2.3
을 간단히 합니다.
단계 2.3.1
을 로 바꿔 씁니다.
단계 2.3.2
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 2.3.3
플러스 마이너스 은 입니다.
단계 3
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 4
단계 4.1
에서 를 인수분해합니다.
단계 4.1.1
에서 를 인수분해합니다.
단계 4.1.2
에서 를 인수분해합니다.
단계 4.1.3
에서 를 인수분해합니다.
단계 4.2
을 로 바꿔 씁니다.
단계 4.3
의 각 항을 로 나누고 식을 간단히 합니다.
단계 4.3.1
의 각 항을 로 나눕니다.
단계 4.3.2
좌변을 간단히 합니다.
단계 4.3.2.1
의 공약수로 약분합니다.
단계 4.3.2.1.1
공약수로 약분합니다.
단계 4.3.2.1.2
을 로 나눕니다.
단계 4.3.3
우변을 간단히 합니다.
단계 4.3.3.1
을 로 나눕니다.
단계 5
정의역은 수식을 정의하는 모든 유효한 값입니다.
구간 표기:
조건제시법: