기초 미적분 예제

점근선 구하기 f(x)=(x^2)/( x^2-1) 의 제곱근
단계 1
가 정의되지 않는 구간을 찾습니다.
단계 2
왼쪽에서 이(가) 이고, 오른쪽에서 이(가) 이므로 는 수직점근선입니다.
단계 3
왼쪽에서 이(가) 이고, 오른쪽에서 이(가) 이므로 는 수직점근선입니다.
단계 4
모든 수직점근선을 나열하기:
단계 5
극한이 존재하지 않기 때문에 수평점근선이 없습니다.
수평점근선 없음
단계 6
다항식 나눗셈을 통해 사선점근선을 구합니다. 식이 근호를 포함하므로 다항식 나눗셈을 수행할 수 없습니다.
사선점근선을 찾을 수 없음
단계 7
모든 점근선의 집합입니다.
수직점근선:
수평점근선 없음
사선점근선을 찾을 수 없음
단계 8