기초 대수 예제

그래프 x+(2( x))/x 의 자연로그
단계 1
점근선을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
가 정의되지 않는 구간을 찾습니다.
단계 1.2
극한이 존재하지 않기 때문에 수평점근선이 없습니다.
수평점근선 없음
단계 1.3
로그와 삼각함수에서는 사선점근선이 존재하지 않습니다.
사선점근선 없음
단계 1.4
모든 점근선의 집합입니다.
수직점근선:
수평점근선 없음
수직점근선:
수평점근선 없음
단계 2
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
수식에서 변수 을 대입합니다.
단계 2.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1
로 나눕니다.
단계 2.2.1.2
의 자연로그값은 입니다.
단계 2.2.1.3
을 곱합니다.
단계 2.2.2
에 더합니다.
단계 2.2.3
최종 답은 입니다.
단계 2.3
를 소수로 변환합니다.
단계 3
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
수식에서 변수 을 대입합니다.
단계 3.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1
공약수로 약분합니다.
단계 3.2.1.2
로 나눕니다.
단계 3.2.2
최종 답은 입니다.
단계 3.3
를 소수로 변환합니다.
단계 4
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
수식에서 변수 을 대입합니다.
단계 4.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1.1
를 로그 안으로 옮겨 을 간단히 합니다.
단계 4.2.1.2
승 합니다.
단계 4.2.1.3
로 바꿔 씁니다.
단계 4.2.1.4
를 로그 안으로 옮겨 을 간단히 합니다.
단계 4.2.2
최종 답은 입니다.
단계 4.3
를 소수로 변환합니다.
단계 5
로그 함수의 그래프는 수직점근선인 점들을 사용하여 그릴 수 있습니다.
수직점근선:
단계 6