기초 대수 예제

이차 변분상수 구하기 1/(x+3)+3/(y+7)=5/(y^2+9y+14)
단계 1
를 포함하지 않은 모든 항을 방정식의 우변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
방정식의 양변에서 를 뺍니다.
단계 1.2
AC 방법을 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 1.2.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 2
방정식 항의 최소공분모를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
여러 값의 최소공분모를 구하는 것은 해당 값들의 분모의 최소공배수를 구하는 것과 같습니다.
단계 2.2
최소공배수는 주어진 모든 수로 나누어 떨어지는 가장 작은 양수입니다.
1. 각 수의 소인수를 나열합니다.
2. 각 인수가 해당 수에서 나타나는 횟수만큼 각 인수를 곱합니다.
단계 2.3
숫자 은 자신을 약수로 가지지만 오직 한 개의 양의 약수를 가지므로 소수가 아닙니다.
소수가 아님
단계 2.4
의 최소공배수는 각 수에 포함된 소인수의 최대 개수만큼 모든 소인수를 곱한 값입니다.
단계 2.5
의 인수는 자신입니다.
번 나타납니다.
단계 2.6
의 인수는 자신입니다.
번 나타납니다.
단계 2.7
의 인수는 자신입니다.
번 나타납니다.
단계 2.8
의 인수는 자신입니다.
번 나타납니다.
단계 2.9
의 최소공배수는 각 항에 포함된 인수의 최대 개수만큼 모든 인수를 곱한 결과입니다.
단계 3
의 각 항에 을 곱하고 분수를 소거합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
의 각 항에 을 곱합니다.
단계 3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1
에서 를 인수분해합니다.
단계 3.2.1.2
공약수로 약분합니다.
단계 3.2.1.3
수식을 다시 씁니다.
단계 3.2.2
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1
분배 법칙을 적용합니다.
단계 3.2.2.2
분배 법칙을 적용합니다.
단계 3.2.2.3
분배 법칙을 적용합니다.
단계 3.2.3
항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.3.1.1
의 왼쪽으로 이동하기
단계 3.2.3.1.2
을 곱합니다.
단계 3.2.3.2
분배 법칙을 적용합니다.
단계 3.2.4
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.4.1
을 곱합니다.
단계 3.2.4.2
을 곱합니다.
단계 3.2.4.3
을 곱합니다.
단계 3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1.1
에서 를 인수분해합니다.
단계 3.3.1.1.2
공약수로 약분합니다.
단계 3.3.1.1.3
수식을 다시 씁니다.
단계 3.3.1.2
분배 법칙을 적용합니다.
단계 3.3.1.3
을 곱합니다.
단계 3.3.1.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.4.1
의 마이너스 부호를 분자로 이동합니다.
단계 3.3.1.4.2
에서 를 인수분해합니다.
단계 3.3.1.4.3
공약수로 약분합니다.
단계 3.3.1.4.4
수식을 다시 씁니다.
단계 3.3.1.5
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.5.1
분배 법칙을 적용합니다.
단계 3.3.1.5.2
분배 법칙을 적용합니다.
단계 3.3.1.5.3
분배 법칙을 적용합니다.
단계 3.3.1.6
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.6.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.6.1.1
을 곱합니다.
단계 3.3.1.6.1.2
의 왼쪽으로 이동하기
단계 3.3.1.6.1.3
을 곱합니다.
단계 3.3.1.6.2
에 더합니다.
단계 3.3.1.7
분배 법칙을 적용합니다.
단계 3.3.1.8
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.8.1
을 곱합니다.
단계 3.3.1.8.2
을 곱합니다.
단계 3.3.2
에서 을 뺍니다.
단계 4
식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
을 포함하는 모든 항을 방정식의 좌변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.1
방정식의 양변에 를 더합니다.
단계 4.1.2
방정식의 양변에 를 더합니다.
단계 4.1.3
에 더합니다.
단계 4.2
모든 항을 방정식의 좌변으로 옮기고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
모든 수식을 방정식의 좌변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1.1
방정식의 양변에서 를 뺍니다.
단계 4.2.1.2
방정식의 양변에서 를 뺍니다.
단계 4.2.2
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.2.1
에서 을 뺍니다.
단계 4.2.2.2
에서 을 뺍니다.
단계 4.3
근의 공식을 이용해 방정식의 해를 구합니다.
단계 4.4
이차함수의 근의 공식에 , , 을 대입하여 를 구합니다.
단계 4.5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.1
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.1.1
분배 법칙을 적용합니다.
단계 4.5.1.2
을 곱합니다.
단계 4.5.1.3
을 곱합니다.
단계 4.5.1.4
로 바꿔 씁니다.
단계 4.5.1.5
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.1.5.1
분배 법칙을 적용합니다.
단계 4.5.1.5.2
분배 법칙을 적용합니다.
단계 4.5.1.5.3
분배 법칙을 적용합니다.
단계 4.5.1.6
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.1.6.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.1.6.1.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 4.5.1.6.1.2
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.1.6.1.2.1
를 옮깁니다.
단계 4.5.1.6.1.2.2
을 곱합니다.
단계 4.5.1.6.1.3
을 곱합니다.
단계 4.5.1.6.1.4
을 곱합니다.
단계 4.5.1.6.1.5
을 곱합니다.
단계 4.5.1.6.1.6
을 곱합니다.
단계 4.5.1.6.2
에 더합니다.
단계 4.5.1.7
을 곱합니다.
단계 4.5.1.8
분배 법칙을 적용합니다.
단계 4.5.1.9
을 곱합니다.
단계 4.5.1.10
에서 을 뺍니다.
단계 4.5.1.11
에서 을 뺍니다.
단계 4.5.1.12
공통인수를 이용하여 인수분해를 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.1.12.1
형태의 다항식에 대해 곱이 이고 합이 인 두 항의 합으로 중간항을 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.1.12.1.1
에서 를 인수분해합니다.
단계 4.5.1.12.1.2
+ 로 다시 씁니다.
단계 4.5.1.12.1.3
분배 법칙을 적용합니다.
단계 4.5.1.12.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.1.12.2.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 4.5.1.12.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 4.5.1.12.3
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 4.5.2
을 곱합니다.
단계 4.6
수식을 간단히 하여 부분에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.6.1
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.6.1.1
분배 법칙을 적용합니다.
단계 4.6.1.2
을 곱합니다.
단계 4.6.1.3
을 곱합니다.
단계 4.6.1.4
로 바꿔 씁니다.
단계 4.6.1.5
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.6.1.5.1
분배 법칙을 적용합니다.
단계 4.6.1.5.2
분배 법칙을 적용합니다.
단계 4.6.1.5.3
분배 법칙을 적용합니다.
단계 4.6.1.6
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.6.1.6.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.6.1.6.1.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 4.6.1.6.1.2
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.6.1.6.1.2.1
를 옮깁니다.
단계 4.6.1.6.1.2.2
을 곱합니다.
단계 4.6.1.6.1.3
을 곱합니다.
단계 4.6.1.6.1.4
을 곱합니다.
단계 4.6.1.6.1.5
을 곱합니다.
단계 4.6.1.6.1.6
을 곱합니다.
단계 4.6.1.6.2
에 더합니다.
단계 4.6.1.7
을 곱합니다.
단계 4.6.1.8
분배 법칙을 적용합니다.
단계 4.6.1.9
을 곱합니다.
단계 4.6.1.10
에서 을 뺍니다.
단계 4.6.1.11
에서 을 뺍니다.
단계 4.6.1.12
공통인수를 이용하여 인수분해를 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.6.1.12.1
형태의 다항식에 대해 곱이 이고 합이 인 두 항의 합으로 중간항을 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.6.1.12.1.1
에서 를 인수분해합니다.
단계 4.6.1.12.1.2
+ 로 다시 씁니다.
단계 4.6.1.12.1.3
분배 법칙을 적용합니다.
단계 4.6.1.12.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.6.1.12.2.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 4.6.1.12.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 4.6.1.12.3
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 4.6.2
을 곱합니다.
단계 4.6.3
로 바꿉니다.
단계 4.6.4
에서 를 인수분해합니다.
단계 4.6.5
로 바꿔 씁니다.
단계 4.6.6
에서 를 인수분해합니다.
단계 4.6.7
에서 를 인수분해합니다.
단계 4.6.8
에서 를 인수분해합니다.
단계 4.6.9
로 바꿔 씁니다.
단계 4.6.10
마이너스 부호를 분수 앞으로 보냅니다.
단계 4.7
수식을 간단히 하여 부분에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.1
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.1.1
분배 법칙을 적용합니다.
단계 4.7.1.2
을 곱합니다.
단계 4.7.1.3
을 곱합니다.
단계 4.7.1.4
로 바꿔 씁니다.
단계 4.7.1.5
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.1.5.1
분배 법칙을 적용합니다.
단계 4.7.1.5.2
분배 법칙을 적용합니다.
단계 4.7.1.5.3
분배 법칙을 적용합니다.
단계 4.7.1.6
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.1.6.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.1.6.1.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 4.7.1.6.1.2
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.1.6.1.2.1
를 옮깁니다.
단계 4.7.1.6.1.2.2
을 곱합니다.
단계 4.7.1.6.1.3
을 곱합니다.
단계 4.7.1.6.1.4
을 곱합니다.
단계 4.7.1.6.1.5
을 곱합니다.
단계 4.7.1.6.1.6
을 곱합니다.
단계 4.7.1.6.2
에 더합니다.
단계 4.7.1.7
을 곱합니다.
단계 4.7.1.8
분배 법칙을 적용합니다.
단계 4.7.1.9
을 곱합니다.
단계 4.7.1.10
에서 을 뺍니다.
단계 4.7.1.11
에서 을 뺍니다.
단계 4.7.1.12
공통인수를 이용하여 인수분해를 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.1.12.1
형태의 다항식에 대해 곱이 이고 합이 인 두 항의 합으로 중간항을 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.1.12.1.1
에서 를 인수분해합니다.
단계 4.7.1.12.1.2
+ 로 다시 씁니다.
단계 4.7.1.12.1.3
분배 법칙을 적용합니다.
단계 4.7.1.12.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.1.12.2.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 4.7.1.12.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 4.7.1.12.3
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 4.7.2
을 곱합니다.
단계 4.7.3
로 바꿉니다.
단계 4.7.4
에서 를 인수분해합니다.
단계 4.7.5
로 바꿔 씁니다.
단계 4.7.6
에서 를 인수분해합니다.
단계 4.7.7
에서 를 인수분해합니다.
단계 4.7.8
에서 를 인수분해합니다.
단계 4.7.9
로 바꿔 씁니다.
단계 4.7.10
마이너스 부호를 분수 앞으로 보냅니다.
단계 4.8
두 해를 모두 조합하면 최종 답이 됩니다.
단계 5
주어진 방정식 로 표현할 수 없으므로 에 정비례하지 않습니다.
에 정비례하지 않습니다