문제를 입력하십시오...
기초 대수 예제
단계 1
단계 1.1
분자에 분모의 역수를 곱합니다.
단계 1.2
에 을 곱합니다.
단계 1.3
을 곱합니다.
단계 1.3.1
에 을 곱합니다.
단계 1.3.2
에 을 곱합니다.
단계 2
단계 2.1
여러 값의 최소공분모를 구하는 것은 해당 값들의 분모의 최소공배수를 구하는 것과 같습니다.
단계 2.2
1과 식의 최소공배수는 그 식 자체입니다.
단계 3
단계 3.1
의 각 항에 을 곱합니다.
단계 3.2
좌변을 간단히 합니다.
단계 3.2.1
각 항을 간단히 합니다.
단계 3.2.1.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 3.2.1.2
지수를 더하여 에 을 곱합니다.
단계 3.2.1.2.1
를 옮깁니다.
단계 3.2.1.2.2
에 을 곱합니다.
단계 3.2.1.3
에 을 곱합니다.
단계 3.2.1.4
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 3.2.1.5
의 공약수로 약분합니다.
단계 3.2.1.5.1
에서 를 인수분해합니다.
단계 3.2.1.5.2
공약수로 약분합니다.
단계 3.2.1.5.3
수식을 다시 씁니다.
단계 3.2.1.6
의 공약수로 약분합니다.
단계 3.2.1.6.1
공약수로 약분합니다.
단계 3.2.1.6.2
수식을 다시 씁니다.
단계 3.2.1.7
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 3.2.1.8
지수를 더하여 에 을 곱합니다.
단계 3.2.1.8.1
를 옮깁니다.
단계 3.2.1.8.2
에 을 곱합니다.
단계 3.2.1.9
에 을 곱합니다.
단계 3.2.1.10
에 을 곱합니다.
단계 3.2.1.11
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 3.2.1.12
지수를 더하여 에 을 곱합니다.
단계 3.2.1.12.1
를 옮깁니다.
단계 3.2.1.12.2
에 을 곱합니다.
단계 3.2.2
항을 더해 식을 간단히 합니다.
단계 3.2.2.1
를 에 더합니다.
단계 3.2.2.2
를 에 더합니다.
단계 3.3
우변을 간단히 합니다.
단계 3.3.1
에 을 곱합니다.
단계 4
단계 4.1
을 포함하는 모든 항을 방정식의 좌변으로 옮깁니다.
단계 4.1.1
방정식의 양변에서 를 뺍니다.
단계 4.1.2
에서 을 뺍니다.
단계 4.2
근의 공식을 이용해 방정식의 해를 구합니다.
단계 4.3
이차함수의 근의 공식에 , , 을 대입하여 를 구합니다.
단계 4.4
간단히 합니다.
단계 4.4.1
분자를 간단히 합니다.
단계 4.4.1.1
를 승 합니다.
단계 4.4.1.2
을 곱합니다.
단계 4.4.1.2.1
에 을 곱합니다.
단계 4.4.1.2.2
에 을 곱합니다.
단계 4.4.1.3
에서 을 뺍니다.
단계 4.4.1.4
을 로 바꿔 씁니다.
단계 4.4.1.4.1
에서 를 인수분해합니다.
단계 4.4.1.4.2
을 로 바꿔 씁니다.
단계 4.4.1.5
근호 안의 항을 밖으로 빼냅니다.
단계 4.4.2
에 을 곱합니다.
단계 4.4.3
을 간단히 합니다.
단계 4.5
두 해를 모두 조합하면 최종 답이 됩니다.
단계 5
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태: