기초 대수 예제

간단히 정리하기 (1/(2x^2)+x/4)/(1/(x+2)-x/2)
단계 1
Multiply the numerator and denominator of the fraction by .
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
을 곱합니다.
단계 1.2
조합합니다.
단계 2
분배 법칙을 적용합니다.
단계 3
소거하고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1
에서 를 인수분해합니다.
단계 3.1.2
공약수로 약분합니다.
단계 3.1.3
수식을 다시 씁니다.
단계 3.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
에서 를 인수분해합니다.
단계 3.2.2
공약수로 약분합니다.
단계 3.2.3
수식을 다시 씁니다.
단계 3.3
승 합니다.
단계 3.4
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.5
에 더합니다.
단계 3.6
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.6.1
에서 를 인수분해합니다.
단계 3.6.2
공약수로 약분합니다.
단계 3.6.3
수식을 다시 씁니다.
단계 3.7
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.7.1
의 마이너스 부호를 분자로 이동합니다.
단계 3.7.2
에서 를 인수분해합니다.
단계 3.7.3
공약수로 약분합니다.
단계 3.7.4
수식을 다시 씁니다.
단계 3.8
을 곱합니다.
단계 3.9
승 합니다.
단계 3.10
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.11
에 더합니다.
단계 4
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
에서 를 인수분해합니다.
단계 4.2
에서 를 인수분해합니다.
단계 4.3
에서 를 인수분해합니다.
단계 5
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1.1
에서 를 인수분해합니다.
단계 5.1.2
에서 를 인수분해합니다.
단계 5.1.3
에서 를 인수분해합니다.
단계 5.2
분배 법칙을 적용합니다.
단계 5.3
을 곱합니다.
단계 5.4
분배 법칙을 적용합니다.
단계 5.5
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.5.1
를 옮깁니다.
단계 5.5.2
을 곱합니다.
단계 5.6
항을 다시 정렬합니다.
단계 6
인수분해하여 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
에서 를 인수분해합니다.
단계 6.2
에서 를 인수분해합니다.
단계 6.3
에서 를 인수분해합니다.
단계 6.4
로 바꿔 씁니다.
단계 6.5
에서 를 인수분해합니다.
단계 6.6
음수 부분을 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.6.1
로 바꿔 씁니다.
단계 6.6.2
마이너스 부호를 분수 앞으로 보냅니다.
단계 6.6.3
에서 인수를 다시 정렬합니다.