기초 대수 예제

Résoudre pour x (x+1)/(x-4)+(x-2)/(x+4)<(-2x^2+x+32)/(x^2-16)
단계 1
부등식의 양변에서 를 뺍니다.
단계 2
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
로 바꿔 씁니다.
단계 2.1.2
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 2.2
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 2.3
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 2.4
각 수식에 적절한 인수 을 곱하여 수식의 분모가 모두 이 되도록 식을 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.1
을 곱합니다.
단계 2.4.2
을 곱합니다.
단계 2.4.3
인수를 다시 정렬합니다.
단계 2.5
공통분모를 가진 분자끼리 묶습니다.
단계 2.6
공통분모를 가진 분자끼리 묶습니다.
단계 2.7
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.7.1
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.7.1.1
분배 법칙을 적용합니다.
단계 2.7.1.2
분배 법칙을 적용합니다.
단계 2.7.1.3
분배 법칙을 적용합니다.
단계 2.7.2
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.7.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.7.2.1.1
을 곱합니다.
단계 2.7.2.1.2
의 왼쪽으로 이동하기
단계 2.7.2.1.3
을 곱합니다.
단계 2.7.2.1.4
을 곱합니다.
단계 2.7.2.2
에 더합니다.
단계 2.7.3
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.7.3.1
분배 법칙을 적용합니다.
단계 2.7.3.2
분배 법칙을 적용합니다.
단계 2.7.3.3
분배 법칙을 적용합니다.
단계 2.7.4
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.7.4.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.7.4.1.1
을 곱합니다.
단계 2.7.4.1.2
의 왼쪽으로 이동하기
단계 2.7.4.1.3
을 곱합니다.
단계 2.7.4.2
에서 을 뺍니다.
단계 2.7.5
분배 법칙을 적용합니다.
단계 2.7.6
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.7.6.1
을 곱합니다.
단계 2.7.6.2
을 곱합니다.
단계 2.8
에 더합니다.
단계 2.9
에 더합니다.
단계 2.10
에서 을 뺍니다.
단계 2.11
에서 을 뺍니다.
단계 2.12
에 더합니다.
단계 2.13
에서 을 뺍니다.
단계 2.14
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.14.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.14.1.1
에서 를 인수분해합니다.
단계 2.14.1.2
에서 를 인수분해합니다.
단계 2.14.1.3
에서 를 인수분해합니다.
단계 2.14.1.4
에서 를 인수분해합니다.
단계 2.14.1.5
에서 를 인수분해합니다.
단계 2.14.2
공통인수를 이용하여 인수분해를 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.14.2.1
형태의 다항식에 대해 곱이 이고 합이 인 두 항의 합으로 중간항을 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.14.2.1.1
에서 를 인수분해합니다.
단계 2.14.2.1.2
+ 로 다시 씁니다.
단계 2.14.2.1.3
분배 법칙을 적용합니다.
단계 2.14.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.14.2.2.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 2.14.2.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 2.14.2.3
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 3
모든 인수가 이 되도록 인수식을 풀어서 수식의 부호가 음수에서 양수로 바뀌는 모든 값을 찾습니다.
단계 4
방정식의 양변에서 를 뺍니다.
단계 5
방정식의 양변에 를 더합니다.
단계 6
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
의 각 항을 로 나눕니다.
단계 6.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1.1
공약수로 약분합니다.
단계 6.2.1.2
로 나눕니다.
단계 7
방정식의 양변에서 를 뺍니다.
단계 8
방정식의 양변에 를 더합니다.
단계 9
각 인수에 대해 식을 풀어 절댓값 식이 음에서 양으로 가는 값을 구합니다.
단계 10
해를 하나로 합합니다.
단계 11
의 정의역을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 11.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.2.1
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 11.2.2
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.2.2.1
와 같다고 둡니다.
단계 11.2.2.2
방정식의 양변에서 를 뺍니다.
단계 11.2.3
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.2.3.1
와 같다고 둡니다.
단계 11.2.3.2
방정식의 양변에 를 더합니다.
단계 11.2.4
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 11.3
정의역은 수식을 정의하는 모든 유효한 값입니다.
단계 12
각 근을 사용하여 시험 구간을 만듭니다.
단계 13
각 구간에서 실험값을 선택하고 이를 원래의 부등식에 대입하여 어느 구간이 부등식을 만족하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 13.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 13.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 13.1.2
원래 부등식에서 로 치환합니다.
단계 13.1.3
좌변 이 우변 보다 작지 않으므로 주어진 명제는 거짓입니다.
False
False
단계 13.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 13.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 13.2.2
원래 부등식에서 로 치환합니다.
단계 13.2.3
좌변 이 우변 보다 작으므로 주어진 명제는 항상 참입니다.
True
True
단계 13.3
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 13.3.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 13.3.2
원래 부등식에서 로 치환합니다.
단계 13.3.3
좌변 이 우변 보다 작지 않으므로 주어진 명제는 거짓입니다.
False
False
단계 13.4
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 13.4.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 13.4.2
원래 부등식에서 로 치환합니다.
단계 13.4.3
좌변 이 우변 보다 작으므로 주어진 명제는 항상 참입니다.
True
True
단계 13.5
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 13.5.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 13.5.2
원래 부등식에서 로 치환합니다.
단계 13.5.3
좌변 이 우변 보다 작지 않으므로 주어진 명제는 거짓입니다.
False
False
단계 13.6
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
거짓
거짓
거짓
거짓
거짓
거짓
단계 14
해는 모두 참인 구간으로 이루어져 있습니다.
또는
단계 15
결과값은 다양한 형태로 나타낼 수 있습니다.
부등식 형식:
구간 표기:
단계 16