기초 대수 예제

Résoudre pour x 제곱근 3x+7- 제곱근 2x-3=2
단계 1
방정식의 양변에 를 더합니다.
단계 2
방정식의 좌변의 근호를 없애기 위해 방정식 양변을 제곱합니다.
단계 3
방정식의 각 변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 3.2.1.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1.2.1
공약수로 약분합니다.
단계 3.2.1.1.2.2
수식을 다시 씁니다.
단계 3.2.1.2
간단히 합니다.
단계 3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1
로 바꿔 씁니다.
단계 3.3.1.2
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.2.1
분배 법칙을 적용합니다.
단계 3.3.1.2.2
분배 법칙을 적용합니다.
단계 3.3.1.2.3
분배 법칙을 적용합니다.
단계 3.3.1.3
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.3.1.1
을 곱합니다.
단계 3.3.1.3.1.2
의 왼쪽으로 이동하기
단계 3.3.1.3.1.3
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.3.1.3.1
승 합니다.
단계 3.3.1.3.1.3.2
승 합니다.
단계 3.3.1.3.1.3.3
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.3.1.3.1.3.4
에 더합니다.
단계 3.3.1.3.1.4
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.3.1.4.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 3.3.1.3.1.4.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 3.3.1.3.1.4.3
을 묶습니다.
단계 3.3.1.3.1.4.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.3.1.4.4.1
공약수로 약분합니다.
단계 3.3.1.3.1.4.4.2
수식을 다시 씁니다.
단계 3.3.1.3.1.4.5
간단히 합니다.
단계 3.3.1.3.2
에서 을 뺍니다.
단계 3.3.1.3.3
에 더합니다.
단계 4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
로 방정식을 다시 씁니다.
단계 4.2
를 포함하지 않은 모든 항을 방정식의 우변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
방정식의 양변에서 를 뺍니다.
단계 4.2.2
방정식의 양변에서 를 뺍니다.
단계 4.2.3
에서 을 뺍니다.
단계 4.2.4
에서 을 뺍니다.
단계 5
방정식의 좌변의 근호를 없애기 위해 방정식 양변을 제곱합니다.
단계 6
방정식의 각 변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 6.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1.1
에 곱의 미분 법칙을 적용합니다.
단계 6.2.1.2
승 합니다.
단계 6.2.1.3
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1.3.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 6.2.1.3.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1.3.2.1
공약수로 약분합니다.
단계 6.2.1.3.2.2
수식을 다시 씁니다.
단계 6.2.1.4
간단히 합니다.
단계 6.2.1.5
분배 법칙을 적용합니다.
단계 6.2.1.6
곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1.6.1
을 곱합니다.
단계 6.2.1.6.2
을 곱합니다.
단계 6.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.1.1
로 바꿔 씁니다.
단계 6.3.1.2
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.1.2.1
분배 법칙을 적용합니다.
단계 6.3.1.2.2
분배 법칙을 적용합니다.
단계 6.3.1.2.3
분배 법칙을 적용합니다.
단계 6.3.1.3
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.1.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.1.3.1.1
을 곱합니다.
단계 6.3.1.3.1.2
의 왼쪽으로 이동하기
단계 6.3.1.3.1.3
을 곱합니다.
단계 6.3.1.3.2
에 더합니다.
단계 7
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
가 식의 우변에 있으므로, 두 변을 바꿔 식의 좌변으로 옮깁니다.
단계 7.2
을 포함하는 모든 항을 방정식의 좌변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.2.1
방정식의 양변에서 를 뺍니다.
단계 7.2.2
에서 을 뺍니다.
단계 7.3
방정식의 양변에 를 더합니다.
단계 7.4
에 더합니다.
단계 7.5
AC 방법을 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.5.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 7.5.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 7.6
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 7.7
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.7.1
와 같다고 둡니다.
단계 7.7.2
방정식의 양변에 를 더합니다.
단계 7.8
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.8.1
와 같다고 둡니다.
단계 7.8.2
방정식의 양변에 를 더합니다.
단계 7.9
을 참으로 만드는 모든 값이 최종 해가 됩니다.