문제를 입력하십시오...
선형 대수 예제
[100110111]y=[123321]⎡⎢⎣100110111⎤⎥⎦y=⎡⎢⎣123321⎤⎥⎦
단계 1
단계 1.1
다시 씁니다.
|100110111|∣∣
∣∣100110111∣∣
∣∣
단계 1.2
Find the determinant.
단계 1.2.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
단계 1.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
단계 1.2.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
단계 1.2.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|1011|∣∣∣1011∣∣∣
단계 1.2.1.4
Multiply element a11a11 by its cofactor.
1|1011|1∣∣∣1011∣∣∣
단계 1.2.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|1011|∣∣∣1011∣∣∣
단계 1.2.1.6
Multiply element a12a12 by its cofactor.
0|1011|0∣∣∣1011∣∣∣
단계 1.2.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|1111|∣∣∣1111∣∣∣
단계 1.2.1.8
Multiply element a13a13 by its cofactor.
0|1111|0∣∣∣1111∣∣∣
단계 1.2.1.9
Add the terms together.
1|1011|+0|1011|+0|1111|1∣∣∣1011∣∣∣+0∣∣∣1011∣∣∣+0∣∣∣1111∣∣∣
1|1011|+0|1011|+0|1111|1∣∣∣1011∣∣∣+0∣∣∣1011∣∣∣+0∣∣∣1111∣∣∣
단계 1.2.2
00에 |1011|∣∣∣1011∣∣∣을 곱합니다.
1|1011|+0+0|1111|1∣∣∣1011∣∣∣+0+0∣∣∣1111∣∣∣
단계 1.2.3
00에 |1111|∣∣∣1111∣∣∣을 곱합니다.
1|1011|+0+01∣∣∣1011∣∣∣+0+0
단계 1.2.4
|1011|∣∣∣1011∣∣∣의 값을 구합니다.
단계 1.2.4.1
2×22×2 행렬의 행렬식은 |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb 공식을 이용해 계산합니다.
1(1⋅1-1⋅0)+0+01(1⋅1−1⋅0)+0+0
단계 1.2.4.2
행렬식을 간단히 합니다.
단계 1.2.4.2.1
11에 11을 곱합니다.
1(1-1⋅0)+0+01(1−1⋅0)+0+0
단계 1.2.4.2.2
11에서 00을 뺍니다.
1⋅1+0+01⋅1+0+0
1⋅1+0+01⋅1+0+0
1⋅1+0+01⋅1+0+0
단계 1.2.5
행렬식을 간단히 합니다.
단계 1.2.5.1
11에 11을 곱합니다.
1+0+01+0+0
단계 1.2.5.2
11를 00에 더합니다.
1+01+0
단계 1.2.5.3
11를 00에 더합니다.
11
11
11
단계 1.3
Since the determinant is non-zero, the inverse exists.
단계 1.4
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[100100110010111001]⎡⎢⎣100100110010111001⎤⎥⎦
단계 1.5
기약 행 사다리꼴을 구합니다.
단계 1.5.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
단계 1.5.1.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
[1001001-11-00-00-11-00-0111001]⎡⎢⎣1001001−11−00−00−11−00−0111001⎤⎥⎦
단계 1.5.1.2
R2R2을 간단히 합니다.
[100100010-110111001]⎡⎢⎣100100010−110111001⎤⎥⎦
[100100010-110111001]⎡⎢⎣100100010−110111001⎤⎥⎦
단계 1.5.2
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
단계 1.5.2.1
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
[100100010-1101-11-01-00-10-01-0]⎡⎢⎣100100010−1101−11−01−00−10−01−0⎤⎥⎦
단계 1.5.2.2
R3R3을 간단히 합니다.
[100100010-110011-101]⎡⎢⎣100100010−110011−101⎤⎥⎦
[100100010-110011-101]⎡⎢⎣100100010−110011−101⎤⎥⎦
단계 1.5.3
Perform the row operation R3=R3-R2R3=R3−R2 to make the entry at 3,23,2 a 00.
단계 1.5.3.1
Perform the row operation R3=R3-R2R3=R3−R2 to make the entry at 3,23,2 a 00.
[100100010-1100-01-11-0-1+10-11-0]⎡⎢⎣100100010−1100−01−11−0−1+10−11−0⎤⎥⎦
단계 1.5.3.2
R3R3을 간단히 합니다.
[100100010-1100010-11]⎡⎢⎣100100010−1100010−11⎤⎥⎦
[100100010-1100010-11]⎡⎢⎣100100010−1100010−11⎤⎥⎦
[100100010-1100010-11]⎡⎢⎣100100010−1100010−11⎤⎥⎦
단계 1.6
The right half of the reduced row echelon form is the inverse.
[100-1100-11]⎡⎢⎣100−1100−11⎤⎥⎦
[100-1100-11]⎡⎢⎣100−1100−11⎤⎥⎦
단계 2
Multiply both sides by the inverse of [100110111]⎡⎢⎣100110111⎤⎥⎦.
[100-1100-11][100110111]y=[100-1100-11][123321]⎡⎢⎣100−1100−11⎤⎥⎦⎡⎢⎣100110111⎤⎥⎦y=⎡⎢⎣100−1100−11⎤⎥⎦⎡⎢⎣123321⎤⎥⎦
단계 3
단계 3.1
[100-1100-11][100110111]⎡⎢⎣100−1100−11⎤⎥⎦⎡⎢⎣100110111⎤⎥⎦ 을 곱합니다.
단계 3.1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×33×3 and the second matrix is 3×33×3.
단계 3.1.2
첫 번째 행렬의 각 행에 두 번째 행렬의 각 열을 곱합니다.
[1⋅1+0⋅1+0⋅11⋅0+0⋅1+0⋅11⋅0+0⋅0+0⋅1-1⋅1+1⋅1+0⋅1-0+1⋅1+0⋅1-0+1⋅0+0⋅10⋅1-1⋅1+1⋅10⋅0-1⋅1+1⋅10⋅0-0+1⋅1]y=[100-1100-11][123321]⎡⎢⎣1⋅1+0⋅1+0⋅11⋅0+0⋅1+0⋅11⋅0+0⋅0+0⋅1−1⋅1+1⋅1+0⋅1−0+1⋅1+0⋅1−0+1⋅0+0⋅10⋅1−1⋅1+1⋅10⋅0−1⋅1+1⋅10⋅0−0+1⋅1⎤⎥⎦y=⎡⎢⎣100−1100−11⎤⎥⎦⎡⎢⎣123321⎤⎥⎦
단계 3.1.3
모든 식을 전개하여 행렬의 각 원소를 간단히 합니다.
[100010001]y=[100-1100-11][123321]⎡⎢⎣100010001⎤⎥⎦y=⎡⎢⎣100−1100−11⎤⎥⎦⎡⎢⎣123321⎤⎥⎦
[100010001]y=[100-1100-11][123321]⎡⎢⎣100010001⎤⎥⎦y=⎡⎢⎣100−1100−11⎤⎥⎦⎡⎢⎣123321⎤⎥⎦
단계 3.2
Multiplying the identity matrix by any matrix AA is the matrix AA itself.
y=[100-1100-11][123321]y=⎡⎢⎣100−1100−11⎤⎥⎦⎡⎢⎣123321⎤⎥⎦
단계 3.3
[100-1100-11][123321]⎡⎢⎣100−1100−11⎤⎥⎦⎡⎢⎣123321⎤⎥⎦ 을 곱합니다.
단계 3.3.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×33×3 and the second matrix is 3×23×2.
단계 3.3.2
첫 번째 행렬의 각 행에 두 번째 행렬의 각 열을 곱합니다.
y=[1⋅1+0⋅3+0⋅21⋅2+0⋅3+0⋅1-1⋅1+1⋅3+0⋅2-1⋅2+1⋅3+0⋅10⋅1-1⋅3+1⋅20⋅2-1⋅3+1⋅1]y=⎡⎢⎣1⋅1+0⋅3+0⋅21⋅2+0⋅3+0⋅1−1⋅1+1⋅3+0⋅2−1⋅2+1⋅3+0⋅10⋅1−1⋅3+1⋅20⋅2−1⋅3+1⋅1⎤⎥⎦
단계 3.3.3
모든 식을 전개하여 행렬의 각 원소를 간단히 합니다.
y=[1221-1-2]y=⎡⎢⎣1221−1−2⎤⎥⎦
y=[1221-1-2]y=⎡⎢⎣1221−1−2⎤⎥⎦
y=[1221-1-2]y=⎡⎢⎣1221−1−2⎤⎥⎦