선형 대수 예제

기약 행 사다리꼴 구하기 rref [[1,1,1,0,5],[0,1,0,0,5],[1,0,0,1,6],[0,0,1,0,6]]
rref [11105010051001600106]⎢ ⎢ ⎢ ⎢11105010051001600106⎥ ⎥ ⎥ ⎥
단계 1
행연산 R3=R3-R1R3=R3R1을 수행하여 3,13,1의 항목을 00로 만듭니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
행연산 R3=R3-R1R3=R3R1을 수행하여 3,13,1의 항목을 00로 만듭니다.
[11105010051-10-10-11-06-500106]⎢ ⎢ ⎢ ⎢1110501005110101106500106⎥ ⎥ ⎥ ⎥
단계 1.2
R3R3을 간단히 합니다.
[11105010050-1-11100106]⎢ ⎢ ⎢ ⎢11105010050111100106⎥ ⎥ ⎥ ⎥
[11105010050-1-11100106]⎢ ⎢ ⎢ ⎢11105010050111100106⎥ ⎥ ⎥ ⎥
단계 2
행연산 R3=R3+R2R3=R3+R2을 수행하여 3,23,2의 항목을 00로 만듭니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
행연산 R3=R3+R2R3=R3+R2을 수행하여 3,23,2의 항목을 00로 만듭니다.
[11105010050+0-1+11-1+01+01+1500106]⎢ ⎢ ⎢ ⎢11105010050+01+111+01+01+1500106⎥ ⎥ ⎥ ⎥
단계 2.2
R3R3을 간단히 합니다.
[111050100500-11600106]⎢ ⎢ ⎢ ⎢11105010050011600106⎥ ⎥ ⎥ ⎥
[111050100500-11600106]⎢ ⎢ ⎢ ⎢11105010050011600106⎥ ⎥ ⎥ ⎥
단계 3
R3R3의 각 성분에 -11을 곱해서 3,33,3의 항목을 11으로 만듭니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
R3R3의 각 성분에 -11을 곱해서 3,33,3의 항목을 11으로 만듭니다.
[1110501005-0-0--1-11-1600106]⎢ ⎢ ⎢ ⎢1110501005001111600106⎥ ⎥ ⎥ ⎥
단계 3.2
R3R3을 간단히 합니다.
[1110501005001-1-600106]⎢ ⎢ ⎢ ⎢11105010050011600106⎥ ⎥ ⎥ ⎥
[1110501005001-1-600106]⎢ ⎢ ⎢ ⎢11105010050011600106⎥ ⎥ ⎥ ⎥
단계 4
행연산 R4=R4-R3을 수행하여 4,3의 항목을 0로 만듭니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
행연산 R4=R4-R3을 수행하여 4,3의 항목을 0로 만듭니다.
[1110501005001-1-60-00-01-10+16+6]
단계 4.2
R4을 간단히 합니다.
[1110501005001-1-6000112]
[1110501005001-1-6000112]
단계 5
행연산 R3=R3+R4을 수행하여 3,4의 항목을 0로 만듭니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
행연산 R3=R3+R4을 수행하여 3,4의 항목을 0로 만듭니다.
[11105010050+00+01+0-1+11-6+112000112]
단계 5.2
R3을 간단히 합니다.
[111050100500106000112]
[111050100500106000112]
단계 6
행연산 R1=R1-R3을 수행하여 1,3의 항목을 0로 만듭니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
행연산 R1=R1-R3을 수행하여 1,3의 항목을 0로 만듭니다.
[1-01-01-10-05-60100500106000112]
단계 6.2
R1을 간단히 합니다.
[1100-10100500106000112]
[1100-10100500106000112]
단계 7
행연산 R1=R1-R2을 수행하여 1,2의 항목을 0로 만듭니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
행연산 R1=R1-R2을 수행하여 1,2의 항목을 0로 만듭니다.
[1-01-10-00-0-1-50100500106000112]
단계 7.2
R1을 간단히 합니다.
[1000-60100500106000112]
[1000-60100500106000112]
 [x2  12  π  xdx ]