문제를 입력하십시오...
선형 대수 예제
단계 1
단계 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
단계 1.2
첫 번째 행렬의 각 행에 두 번째 행렬의 각 열을 곱합니다.
단계 1.3
모든 식을 전개하여 행렬의 각 원소를 간단히 합니다.
단계 2
단계 2.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
단계 2.2
첫 번째 행렬의 각 행에 두 번째 행렬의 각 열을 곱합니다.
단계 2.3
모든 식을 전개하여 행렬의 각 원소를 간단히 합니다.
단계 2.3.1
를 옮깁니다.
단계 2.3.2
를 에 더합니다.
단계 3
행렬의 행렬식은 원소 자신입니다.
단계 4
Since the determinant is non-zero, the inverse exists.
단계 5
The inverse of a matrix is a matrix with the reciprocal of the original element.