선형 대수 예제

고유벡터/고유공간 구하기 A=[[6,-3],[-2,1]]
단계 1
고유값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
특성방정식 를 구하기 위하여 공식을 세웁니다.
단계 1.2
크기가 인 단위행렬은 주대각선이 1이고 나머지는 0인 정방행렬입니다.
단계 1.3
알고 있는 값을 에 대입합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
를 대입합니다.
단계 1.3.2
를 대입합니다.
단계 1.4
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.1
행렬의 각 원소에 을 곱합니다.
단계 1.4.1.2
행렬의 각 원소를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1
을 곱합니다.
단계 1.4.1.2.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.2.1
을 곱합니다.
단계 1.4.1.2.2.2
을 곱합니다.
단계 1.4.1.2.3
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.3.1
을 곱합니다.
단계 1.4.1.2.3.2
을 곱합니다.
단계 1.4.1.2.4
을 곱합니다.
단계 1.4.2
해당하는 원소를 더합니다.
단계 1.4.3
Simplify each element.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.3.1
에 더합니다.
단계 1.4.3.2
에 더합니다.
단계 1.5
Find the determinant.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1
행렬의 행렬식은 공식을 이용해 계산합니다.
단계 1.5.2
행렬식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.2.1.1
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.2.1.1.1
분배 법칙을 적용합니다.
단계 1.5.2.1.1.2
분배 법칙을 적용합니다.
단계 1.5.2.1.1.3
분배 법칙을 적용합니다.
단계 1.5.2.1.2
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.2.1.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.2.1.2.1.1
을 곱합니다.
단계 1.5.2.1.2.1.2
을 곱합니다.
단계 1.5.2.1.2.1.3
을 곱합니다.
단계 1.5.2.1.2.1.4
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 1.5.2.1.2.1.5
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.2.1.2.1.5.1
를 옮깁니다.
단계 1.5.2.1.2.1.5.2
을 곱합니다.
단계 1.5.2.1.2.1.6
을 곱합니다.
단계 1.5.2.1.2.1.7
을 곱합니다.
단계 1.5.2.1.2.2
에서 을 뺍니다.
단계 1.5.2.1.3
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.2.1.3.1
을 곱합니다.
단계 1.5.2.1.3.2
을 곱합니다.
단계 1.5.2.2
의 반대 항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.2.2.1
에서 을 뺍니다.
단계 1.5.2.2.2
에 더합니다.
단계 1.5.2.3
을 다시 정렬합니다.
단계 1.6
특성다항식이 이 되도록 하여 고유값 를 구합니다.
단계 1.7
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.7.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.7.1.1
에서 를 인수분해합니다.
단계 1.7.1.2
에서 를 인수분해합니다.
단계 1.7.1.3
에서 를 인수분해합니다.
단계 1.7.2
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 1.7.3
와 같다고 둡니다.
단계 1.7.4
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.7.4.1
와 같다고 둡니다.
단계 1.7.4.2
방정식의 양변에 를 더합니다.
단계 1.7.5
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 2
The eigenvector is equal to the null space of the matrix minus the eigenvalue times the identity matrix where is the null space and is the identity matrix.
단계 3
Find the eigenvector using the eigenvalue .
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
알고 있는 값을 공식에 대입합니다.
단계 3.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1
행렬의 각 원소에 을 곱합니다.
단계 3.2.1.2
행렬의 각 원소를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.2.1
을 곱합니다.
단계 3.2.1.2.2
을 곱합니다.
단계 3.2.1.2.3
을 곱합니다.
단계 3.2.1.2.4
을 곱합니다.
단계 3.2.2
Adding any matrix to a null matrix is the matrix itself.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1
해당하는 원소를 더합니다.
단계 3.2.2.2
Simplify each element.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.2.1
에 더합니다.
단계 3.2.2.2.2
에 더합니다.
단계 3.2.2.2.3
에 더합니다.
단계 3.2.2.2.4
에 더합니다.
단계 3.3
Find the null space when .
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
Write as an augmented matrix for .
단계 3.3.2
기약 행 사다리꼴을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1
Multiply each element of by to make the entry at a .
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1.1
Multiply each element of by to make the entry at a .
단계 3.3.2.1.2
을 간단히 합니다.
단계 3.3.2.2
Perform the row operation to make the entry at a .
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.2.1
Perform the row operation to make the entry at a .
단계 3.3.2.2.2
을 간단히 합니다.
단계 3.3.3
Use the result matrix to declare the final solution to the system of equations.
단계 3.3.4
Write a solution vector by solving in terms of the free variables in each row.
단계 3.3.5
Write the solution as a linear combination of vectors.
단계 3.3.6
Write as a solution set.
단계 3.3.7
The solution is the set of vectors created from the free variables of the system.
단계 4
Find the eigenvector using the eigenvalue .
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
알고 있는 값을 공식에 대입합니다.
단계 4.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1.1
행렬의 각 원소에 을 곱합니다.
단계 4.2.1.2
행렬의 각 원소를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1.2.1
을 곱합니다.
단계 4.2.1.2.2
을 곱합니다.
단계 4.2.1.2.3
을 곱합니다.
단계 4.2.1.2.4
을 곱합니다.
단계 4.2.2
해당하는 원소를 더합니다.
단계 4.2.3
Simplify each element.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.3.1
에서 을 뺍니다.
단계 4.2.3.2
에 더합니다.
단계 4.2.3.3
에 더합니다.
단계 4.2.3.4
에서 을 뺍니다.
단계 4.3
Find the null space when .
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
Write as an augmented matrix for .
단계 4.3.2
기약 행 사다리꼴을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.1
Multiply each element of by to make the entry at a .
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.1.1
Multiply each element of by to make the entry at a .
단계 4.3.2.1.2
을 간단히 합니다.
단계 4.3.2.2
Perform the row operation to make the entry at a .
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.2.1
Perform the row operation to make the entry at a .
단계 4.3.2.2.2
을 간단히 합니다.
단계 4.3.3
Use the result matrix to declare the final solution to the system of equations.
단계 4.3.4
Write a solution vector by solving in terms of the free variables in each row.
단계 4.3.5
Write the solution as a linear combination of vectors.
단계 4.3.6
Write as a solution set.
단계 4.3.7
The solution is the set of vectors created from the free variables of the system.
단계 5
The eigenspace of is the list of the vector space for each eigenvalue.