문제를 입력하십시오...
유한 수학 예제
단계 1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 2
식이 정의되지 않은 지점을 알아내려면 의 진수를 보다 같거나 작게 설정해야 합니다.
단계 3
단계 3.1
좌변의 근호를 없애기 위해 부등식 양변을 제곱합니다.
단계 3.2
부등식의 양번을 간단히 합니다.
단계 3.2.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 3.2.2
좌변을 간단히 합니다.
단계 3.2.2.1
을 간단히 합니다.
단계 3.2.2.1.1
의 지수를 곱합니다.
단계 3.2.2.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 3.2.2.1.1.2
의 공약수로 약분합니다.
단계 3.2.2.1.1.2.1
공약수로 약분합니다.
단계 3.2.2.1.1.2.2
수식을 다시 씁니다.
단계 3.2.2.1.2
간단히 합니다.
단계 3.2.3
우변을 간단히 합니다.
단계 3.2.3.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 3.3
에 대해 풉니다.
단계 3.3.1
부등식 양변에 를 더합니다.
단계 3.3.2
의 각 항을 로 나누고 식을 간단히 합니다.
단계 3.3.2.1
의 각 항을 로 나눕니다.
단계 3.3.2.2
좌변을 간단히 합니다.
단계 3.3.2.2.1
의 공약수로 약분합니다.
단계 3.3.2.2.1.1
공약수로 약분합니다.
단계 3.3.2.2.1.2
을 로 나눕니다.
단계 3.4
의 정의역을 구합니다.
단계 3.4.1
식이 정의된 지점을 알아내려면 의 피개법수를 보다 크거나 같게 설정해야 합니다.
단계 3.4.2
에 대해 풉니다.
단계 3.4.2.1
부등식 양변에 를 더합니다.
단계 3.4.2.2
의 각 항을 로 나누고 식을 간단히 합니다.
단계 3.4.2.2.1
의 각 항을 로 나눕니다.
단계 3.4.2.2.2
좌변을 간단히 합니다.
단계 3.4.2.2.2.1
의 공약수로 약분합니다.
단계 3.4.2.2.2.1.1
공약수로 약분합니다.
단계 3.4.2.2.2.1.2
을 로 나눕니다.
단계 3.4.3
정의역은 수식을 정의하는 모든 유효한 값입니다.
단계 3.5
각 근을 사용하여 시험 구간을 만듭니다.
단계 3.6
각 구간에서 실험값을 선택하고 이를 원래의 부등식에 대입하여 어느 구간이 부등식을 만족하는지 확인합니다.
단계 3.6.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 3.6.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 3.6.1.2
원래 부등식에서 를 로 치환합니다.
단계 3.6.1.3
좌변이 우변과 같지 않으므로 주어진 명제는 거짓입니다.
False
False
단계 3.6.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 3.6.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 3.6.2.2
원래 부등식에서 를 로 치환합니다.
단계 3.6.2.3
좌변 이 우변 보다 크므로 주어진 명제는 거짓입니다.
False
False
단계 3.6.3
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
거짓
거짓
거짓
거짓
단계 3.7
구간 안에 속하는 수가 없으므로 부등식의 해가 존재하지 않습니다.
해 없음
해 없음
단계 4
식이 정의되지 않은 지점을 알아내려면 의 진수를 보다 같거나 작게 설정해야 합니다.
단계 5
단계 5.1
모든 인수가 이 되도록 인수식을 풀어서 수식의 부호가 음수에서 양수로 바뀌는 모든 값을 찾습니다.
단계 5.2
의 정의역을 구합니다.
단계 5.2.1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 5.2.2
정의역은 수식을 정의하는 모든 유효한 값입니다.
단계 5.3
해는 모두 참인 구간으로 이루어져 있습니다.
단계 6
식이 정의되지 않은 지점을 알아내려면 의 피개법수를 보다 작게 설정해야 합니다.
단계 7
단계 7.1
부등식 양변에 를 더합니다.
단계 7.2
의 각 항을 로 나누고 식을 간단히 합니다.
단계 7.2.1
의 각 항을 로 나눕니다.
단계 7.2.2
좌변을 간단히 합니다.
단계 7.2.2.1
의 공약수로 약분합니다.
단계 7.2.2.1.1
공약수로 약분합니다.
단계 7.2.2.1.2
을 로 나눕니다.
단계 8
분모가 이거나 제곱근의 인수가 보다 작거나 또는 로그의 진수가 보다 작거나 같은 경우 식이 정의되지 않습니다.
단계 9