유한 수학 예제

무정의/비연속 구간 찾기 ( 로그 제곱근 x 제곱근 x)/( 로그 세제곱근 x)
단계 1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
로그의 정의를 이용하여 를 지수 형태로 다시 씁니다. 만약 가 양의 실수와 이면, 와 같습니다.
단계 2.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
로 방정식을 다시 씁니다.
단계 2.2.2
방정식의 좌변의 근호를 없애기 위해 방정식 양변을 세제곱합니다.
단계 2.2.3
방정식의 각 변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.3.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 2.2.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.3.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.3.2.1.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.3.2.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 2.2.3.2.1.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.3.2.1.1.2.1
공약수로 약분합니다.
단계 2.2.3.2.1.1.2.2
수식을 다시 씁니다.
단계 2.2.3.2.1.2
간단히 합니다.
단계 2.2.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.3.3.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.3.3.1.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.3.3.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 2.2.3.3.1.1.2
을 곱합니다.
단계 2.2.3.3.1.2
모든 수의 승은 입니다.
단계 3
식이 정의되지 않은 지점을 알아내려면 의 진수를 보다 같거나 작게 설정해야 합니다.
단계 4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
좌변의 근호를 없애기 위해 부등식 양변을 제곱합니다.
단계 4.2
부등식의 양번을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 4.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.2.1.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.2.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 4.2.2.1.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.2.1.1.2.1
공약수로 약분합니다.
단계 4.2.2.1.1.2.2
수식을 다시 씁니다.
단계 4.2.2.1.2
간단히 합니다.
단계 4.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.3.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 4.3
좌변의 근호를 없애기 위해 부등식 양변을 제곱합니다.
단계 4.4
부등식의 양번을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 4.4.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.2.1.1
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.2.1.1.1
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.2.1.1.1.1
승 합니다.
단계 4.4.2.1.1.1.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 4.4.2.1.1.2
을(를) 공통분모가 있는 분수로 표현합니다.
단계 4.4.2.1.1.3
공통분모를 가진 분자끼리 묶습니다.
단계 4.4.2.1.1.4
에 더합니다.
단계 4.4.2.1.2
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.2.1.2.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 4.4.2.1.2.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.2.1.2.2.1
공약수로 약분합니다.
단계 4.4.2.1.2.2.2
수식을 다시 씁니다.
단계 4.4.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.3.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 4.5
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.1
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
단계 4.5.2
방정식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.2.1
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.2.1.1
근호 안의 항을 밖으로 빼냅니다.
단계 4.5.2.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.2.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.2.2.1.1
로 바꿔 씁니다.
단계 4.5.2.2.1.2
근호 안의 항을 밖으로 빼냅니다.
단계 5
식이 정의되지 않은 지점을 알아내려면 의 진수를 보다 같거나 작게 설정해야 합니다.
단계 6
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
To remove the radical on the left side of the inequality, cube both sides of the inequality.
단계 6.2
부등식의 양번을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 6.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.2.1.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.2.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 6.2.2.1.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.2.1.1.2.1
공약수로 약분합니다.
단계 6.2.2.1.1.2.2
수식을 다시 씁니다.
단계 6.2.2.1.2
간단히 합니다.
단계 6.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.3.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 7
식이 정의되지 않은 지점을 알아내려면 의 피개법수를 보다 작게 설정해야 합니다.
단계 8
식이 정의되지 않은 지점을 알아내려면 의 피개법수를 보다 작게 설정해야 합니다.
단계 9
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1
좌변의 근호를 없애기 위해 부등식 양변을 제곱합니다.
단계 9.2
부등식의 양번을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.2.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 9.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.2.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.2.2.1.1
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.2.2.1.1.1
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.2.2.1.1.1.1
승 합니다.
단계 9.2.2.1.1.1.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 9.2.2.1.1.2
을(를) 공통분모가 있는 분수로 표현합니다.
단계 9.2.2.1.1.3
공통분모를 가진 분자끼리 묶습니다.
단계 9.2.2.1.1.4
에 더합니다.
단계 9.2.2.1.2
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.2.2.1.2.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 9.2.2.1.2.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.2.2.1.2.2.1
공약수로 약분합니다.
단계 9.2.2.1.2.2.2
수식을 다시 씁니다.
단계 9.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.2.3.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 9.3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.3.1
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
단계 9.3.2
방정식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.3.2.1
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.3.2.1.1
근호 안의 항을 밖으로 빼냅니다.
단계 9.3.2.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.3.2.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.3.2.2.1.1
로 바꿔 씁니다.
단계 9.3.2.2.1.2
근호 안의 항을 밖으로 빼냅니다.
단계 9.4
의 정의역을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.4.1
식이 정의된 지점을 알아내려면 의 피개법수를 보다 크거나 같게 설정해야 합니다.
단계 9.4.2
정의역은 수식을 정의하는 모든 유효한 값입니다.
단계 9.5
각 근을 사용하여 시험 구간을 만듭니다.
단계 9.6
각 구간에서 실험값을 선택하고 이를 원래의 부등식에 대입하여 어느 구간이 부등식을 만족하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.6.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.6.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 9.6.1.2
원래 부등식에서 로 치환합니다.
단계 9.6.1.3
좌변이 우변과 같지 않으므로 주어진 명제는 거짓입니다.
False
False
단계 9.6.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.6.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 9.6.2.2
원래 부등식에서 로 치환합니다.
단계 9.6.2.3
좌변 이 우변 보다 작지 않으므로 주어진 명제는 거짓입니다.
False
False
단계 9.6.3
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
거짓
거짓
거짓
거짓
단계 9.7
구간 안에 속하는 수가 없으므로 부등식의 해가 존재하지 않습니다.
해 없음
해 없음
단계 10
분모가 이거나 제곱근의 인수가 보다 작거나 또는 로그의 진수가 보다 작거나 같은 경우 식이 정의되지 않습니다.
단계 11