유한 수학 예제

정의역 구하기 e^(2 자연로그 (1/( 제곱근 -x))+3)
단계 1
식이 정의된 지점을 알아내려면 의 진수를 보다 크게 설정해야 합니다.
단계 2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
부등식의 양변에서 를 뺍니다.
단계 2.1.2
양변에 을 곱합니다.
단계 2.1.3
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.3.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.3.1.1
공약수로 약분합니다.
단계 2.1.3.1.2
수식을 다시 씁니다.
단계 2.1.4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.4.1
로 방정식을 다시 씁니다.
단계 2.1.4.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.4.2.1
의 각 항을 로 나눕니다.
단계 2.1.4.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.4.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.4.2.2.1.1
공약수로 약분합니다.
단계 2.1.4.2.2.1.2
로 나눕니다.
단계 2.1.4.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.4.2.3.1
마이너스 부호를 분수 앞으로 보냅니다.
단계 2.2
방정식의 좌변의 근호를 없애기 위해 방정식 양변을 제곱합니다.
단계 2.3
방정식의 각 변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 2.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 2.3.2.1.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1.1.2.1
공약수로 약분합니다.
단계 2.3.2.1.1.2.2
수식을 다시 씁니다.
단계 2.3.2.1.2
간단히 합니다.
단계 2.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.3.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.3.1.1
지수 법칙 을 이용하여 지수를 분배합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.3.1.1.1
에 곱의 미분 법칙을 적용합니다.
단계 2.3.3.1.1.2
에 곱의 미분 법칙을 적용합니다.
단계 2.3.3.1.2
승 합니다.
단계 2.3.3.1.3
을 곱합니다.
단계 2.3.3.1.4
1의 모든 거듭제곱은 1입니다.
단계 2.3.3.1.5
승 합니다.
단계 2.4
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.1
의 각 항을 로 나눕니다.
단계 2.4.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.2.1
두 음수를 나누면 양수가 나옵니다.
단계 2.4.2.2
로 나눕니다.
단계 2.4.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.3.1
의 분모에서 -1을 옮깁니다.
단계 2.4.3.2
로 바꿔 씁니다.
단계 2.5
의 정의역을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1
식이 정의된 지점을 알아내려면 의 피개법수를 보다 크거나 같게 설정해야 합니다.
단계 2.5.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.2.1
의 각 항을 로 나눕니다. 부등식의 양변에 음수를 곱하거나 나눌 때에는 부등호의 방향을 바꿉니다.
단계 2.5.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.2.2.1
두 음수를 나누면 양수가 나옵니다.
단계 2.5.2.2.2
로 나눕니다.
단계 2.5.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.2.3.1
로 나눕니다.
단계 2.5.3
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 2.5.4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.4.1
방정식의 좌변의 근호를 없애기 위해 방정식 양변을 제곱합니다.
단계 2.5.4.2
방정식의 각 변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.4.2.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 2.5.4.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.4.2.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.4.2.2.1.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.4.2.2.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 2.5.4.2.2.1.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.4.2.2.1.1.2.1
공약수로 약분합니다.
단계 2.5.4.2.2.1.1.2.2
수식을 다시 씁니다.
단계 2.5.4.2.2.1.2
간단히 합니다.
단계 2.5.4.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.4.2.3.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 2.5.4.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.4.3.1
의 각 항을 로 나눕니다.
단계 2.5.4.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.4.3.2.1
두 음수를 나누면 양수가 나옵니다.
단계 2.5.4.3.2.2
로 나눕니다.
단계 2.5.4.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.4.3.3.1
로 나눕니다.
단계 2.5.5
정의역은 수식을 정의하는 모든 유효한 값입니다.
단계 2.6
각 근을 사용하여 시험 구간을 만듭니다.
단계 2.7
각 구간에서 실험값을 선택하고 이를 원래의 부등식에 대입하여 어느 구간이 부등식을 만족하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.7.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.7.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 2.7.1.2
원래 부등식에서 로 치환합니다.
단계 2.7.1.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
True
True
단계 2.7.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.7.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 2.7.2.2
원래 부등식에서 로 치환합니다.
단계 2.7.2.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
True
True
단계 2.7.3
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.7.3.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 2.7.3.2
원래 부등식에서 로 치환합니다.
단계 2.7.3.3
좌변이 우변과 같지 않으므로 주어진 명제는 거짓입니다.
False
False
단계 2.7.4
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
거짓
거짓
단계 2.8
해는 모두 참인 구간으로 이루어져 있습니다.
또는
또는
단계 3
식이 정의된 지점을 알아내려면 의 피개법수를 보다 크거나 같게 설정해야 합니다.
단계 4
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
의 각 항을 로 나눕니다. 부등식의 양변에 음수를 곱하거나 나눌 때에는 부등호의 방향을 바꿉니다.
단계 4.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
두 음수를 나누면 양수가 나옵니다.
단계 4.2.2
로 나눕니다.
단계 4.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
로 나눕니다.
단계 5
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 6
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
방정식의 좌변의 근호를 없애기 위해 방정식 양변을 제곱합니다.
단계 6.2
방정식의 각 변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 6.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.2.1.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.2.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 6.2.2.1.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.2.1.1.2.1
공약수로 약분합니다.
단계 6.2.2.1.1.2.2
수식을 다시 씁니다.
단계 6.2.2.1.2
간단히 합니다.
단계 6.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.3.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 6.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.1
의 각 항을 로 나눕니다.
단계 6.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.2.1
두 음수를 나누면 양수가 나옵니다.
단계 6.3.2.2
로 나눕니다.
단계 6.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.3.1
로 나눕니다.
단계 7
정의역은 수식을 정의하는 모든 유효한 값입니다.
구간 표기:
조건제시법:
단계 8