유한 수학 예제

정의역 구하기 (4sin(A)*cos(A)*cos(2A)*sin(15))/(sin(2A)(tan(225)-2sin(A)^2))
단계 1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 2.2
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
와 같다고 둡니다.
단계 2.2.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1
사인 안의 를 꺼내기 위해 방정식 양변에 사인의 역을 취합니다.
단계 2.2.2.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.2.1
의 정확한 값은 입니다.
단계 2.2.2.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.3.1
의 각 항을 로 나눕니다.
단계 2.2.2.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.3.2.1.1
공약수로 약분합니다.
단계 2.2.2.3.2.1.2
로 나눕니다.
단계 2.2.2.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.3.3.1
로 나눕니다.
단계 2.2.2.4
사인 함수는 제1사분면과 제2사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제2사분면에 속한 해를 구합니다.
단계 2.2.2.5
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.5.1
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.5.1.1
을 곱합니다.
단계 2.2.2.5.1.2
에 더합니다.
단계 2.2.2.5.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.5.2.1
의 각 항을 로 나눕니다.
단계 2.2.2.5.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.5.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.5.2.2.1.1
공약수로 약분합니다.
단계 2.2.2.5.2.2.1.2
로 나눕니다.
단계 2.2.2.5.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.5.2.3.1
로 나눕니다.
단계 2.2.2.6
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.6.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 2.2.2.6.2
주기 공식에서 을 대입합니다.
단계 2.2.2.6.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 2.2.2.6.4
로 나눕니다.
단계 2.2.2.7
함수 의 주기는 이므로 양 방향으로 도마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
임의의 정수 에 대해
단계 2.3
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
와 같다고 둡니다.
단계 2.3.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1.1.1
제1사분면에서 동일한 삼각값을 갖는 각도를 찾아 기준 각도를 적용합니다.
단계 2.3.2.1.1.2
의 정확한 값은 입니다.
단계 2.3.2.2
방정식의 양변에서 를 뺍니다.
단계 2.3.2.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.3.1
의 각 항을 로 나눕니다.
단계 2.3.2.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.3.2.1.1
공약수로 약분합니다.
단계 2.3.2.3.2.1.2
로 나눕니다.
단계 2.3.2.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.3.3.1
두 음수를 나누면 양수가 나옵니다.
단계 2.3.2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
단계 2.3.2.5
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.5.1
로 바꿔 씁니다.
단계 2.3.2.5.2
의 거듭제곱근은 입니다.
단계 2.3.2.5.3
을 곱합니다.
단계 2.3.2.5.4
분모를 결합하고 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.5.4.1
을 곱합니다.
단계 2.3.2.5.4.2
승 합니다.
단계 2.3.2.5.4.3
승 합니다.
단계 2.3.2.5.4.4
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.3.2.5.4.5
에 더합니다.
단계 2.3.2.5.4.6
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.5.4.6.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 2.3.2.5.4.6.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 2.3.2.5.4.6.3
을 묶습니다.
단계 2.3.2.5.4.6.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.5.4.6.4.1
공약수로 약분합니다.
단계 2.3.2.5.4.6.4.2
수식을 다시 씁니다.
단계 2.3.2.5.4.6.5
지수값을 계산합니다.
단계 2.3.2.6
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.6.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 2.3.2.6.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 2.3.2.6.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 2.3.2.7
각 식에 대하여 를 구합니다.
단계 2.3.2.8
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.8.1
사인 안의 를 꺼내기 위해 방정식 양변에 사인의 역을 취합니다.
단계 2.3.2.8.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.8.2.1
의 정확한 값은 입니다.
단계 2.3.2.8.3
사인 함수는 제1사분면과 제2사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제2사분면에 속한 해를 구합니다.
단계 2.3.2.8.4
에서 을 뺍니다.
단계 2.3.2.8.5
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.8.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 2.3.2.8.5.2
주기 공식에서 을 대입합니다.
단계 2.3.2.8.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 2.3.2.8.5.4
로 나눕니다.
단계 2.3.2.8.6
함수 의 주기는 이므로 양 방향으로 도마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 2.3.2.9
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.9.1
사인 안의 를 꺼내기 위해 방정식 양변에 사인의 역을 취합니다.
단계 2.3.2.9.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.9.2.1
의 정확한 값은 입니다.
단계 2.3.2.9.3
사인 함수는 제3사분면과 제4사분면에서 음의 값을 가집니다. 두 번째 해를 구하려면 에서 해를 빼서 기준각을 찾습니다. 그리고 이 기준각에 를 더하여 제3사분면에 속한 해를 구합니다.
단계 2.3.2.9.4
두 번째 해를 구하기 위하여 수식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.9.4.1
에서 을 뺍니다.
단계 2.3.2.9.4.2
결과 각인 은 양의 값으로 보다 작으며 과 양변을 공유하는 관계입니다.
단계 2.3.2.9.5
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.9.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 2.3.2.9.5.2
주기 공식에서 을 대입합니다.
단계 2.3.2.9.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 2.3.2.9.5.4
로 나눕니다.
단계 2.3.2.9.6
모든 음의 각에 를 더하여 양의 각을 얻습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.9.6.1
를 더하여 양의 각도를 구합니다.
단계 2.3.2.9.6.2
에서 을 뺍니다.
단계 2.3.2.9.6.3
새 각을 나열합니다.
단계 2.3.2.9.7
함수 의 주기는 이므로 양 방향으로 도마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 2.3.2.10
모든 해를 나열합니다.
임의의 정수 에 대해
단계 2.3.2.11
답안을 하나로 합합니다.
임의의 정수 에 대해
임의의 정수 에 대해
임의의 정수 에 대해
단계 2.4
을 참으로 만드는 모든 값이 최종 해가 됩니다.
임의의 정수 에 대해
단계 2.5
답안을 하나로 합합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1
, 에 통합합니다.
임의의 정수 에 대해
단계 2.5.2
답안을 하나로 합합니다.
임의의 정수 에 대해
임의의 정수 에 대해
임의의 정수 에 대해
단계 3
정의역은 수식을 정의하는 모든 유효한 값입니다.
조건제시법:
임의의 정수 에 대해
단계 4