유한 수학 예제

정의역 구하기 1/(sin(2a))-tan(a)=cot(2a)
단계 1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
사인 안의 를 꺼내기 위해 방정식 양변에 사인의 역을 취합니다.
단계 2.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
의 정확한 값은 입니다.
단계 2.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
의 각 항을 로 나눕니다.
단계 2.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1.1
공약수로 약분합니다.
단계 2.3.2.1.2
로 나눕니다.
단계 2.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.3.1
로 나눕니다.
단계 2.4
사인 함수는 제1사분면과 제2사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제2사분면에 속한 해를 구합니다.
단계 2.5
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1.1
을 곱합니다.
단계 2.5.1.2
에 더합니다.
단계 2.5.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.2.1
의 각 항을 로 나눕니다.
단계 2.5.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.2.2.1.1
공약수로 약분합니다.
단계 2.5.2.2.1.2
로 나눕니다.
단계 2.6
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.6.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 2.6.2
주기 공식에서 을 대입합니다.
단계 2.6.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 2.6.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.6.4.1
공약수로 약분합니다.
단계 2.6.4.2
로 나눕니다.
단계 2.7
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
단계 2.8
답안을 하나로 합합니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 3
식이 정의되지 않은 지점을 알아내려면 의 진수를 과 같게 설정해야 합니다.
임의의 정수 에 대해
단계 4
정의역은 수식을 정의하는 모든 유효한 값입니다.
조건제시법:
임의의 정수 에 대해
단계 5