문제를 입력하십시오...
유한 수학 예제
단계 1
식이 정의된 지점을 알아내려면 의 진수를 보다 크게 설정해야 합니다.
단계 2
부등식 양변에 를 더합니다.
단계 3
식이 정의된 지점을 알아내려면 의 진수를 보다 크게 설정해야 합니다.
단계 4
부등식 양변에 를 더합니다.
단계 5
식이 정의된 지점을 알아내려면 의 진수를 보다 크게 설정해야 합니다.
단계 6
단계 6.1
부등식을 방정식으로 바꿉니다.
단계 6.2
에서 를 인수분해합니다.
단계 6.2.1
에서 를 인수분해합니다.
단계 6.2.2
에서 를 인수분해합니다.
단계 6.2.3
에서 를 인수분해합니다.
단계 6.3
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 6.4
를 와 같다고 둡니다.
단계 6.5
이 가 되도록 하고 에 대해 식을 풉니다.
단계 6.5.1
를 와 같다고 둡니다.
단계 6.5.2
방정식의 양변에 를 더합니다.
단계 6.6
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 6.7
각 근을 사용하여 시험 구간을 만듭니다.
단계 6.8
각 구간에서 실험값을 선택하고 이를 원래의 부등식에 대입하여 어느 구간이 부등식을 만족하는지 확인합니다.
단계 6.8.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 6.8.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 6.8.1.2
원래 부등식에서 를 로 치환합니다.
단계 6.8.1.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
True
True
단계 6.8.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 6.8.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 6.8.2.2
원래 부등식에서 를 로 치환합니다.
단계 6.8.2.3
좌변 이 우변 보다 크지 않으므로 주어진 명제는 거짓입니다.
False
False
단계 6.8.3
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 6.8.3.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 6.8.3.2
원래 부등식에서 를 로 치환합니다.
단계 6.8.3.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
True
True
단계 6.8.4
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
참
거짓
참
참
거짓
참
단계 6.9
해는 모두 참인 구간으로 이루어져 있습니다.
또는
또는
단계 7
식이 정의된 지점을 알아내려면 의 진수를 보다 크게 설정해야 합니다.
단계 8
부등식의 양변에서 를 뺍니다.
단계 9
정의역은 수식을 정의하는 모든 유효한 값입니다.
구간 표기:
조건제시법:
단계 10